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ABSTRACT 

 

Vertical climbing has featured prominently in hypotheses of both early hominoid 

evolution and the origins of hominin bipedalism. Although the kinematics of vertical 

climbing has been studied for the shoulder, elbow, hip and knee joints, the talocrural 

joint, or ankle, has not received nearly as much attention. Yet, the ankle is a critical 

region for determining how the foot will be positioned against a vertical substrate and the 

morphology of this joint may be specifically adapted for vertical climbing in those 

species that practice this form of locomotion. This dissertation attempts to improve our 

understanding of the kinematics of the talocrural joint during vertical climbing bouts in 

hominoids and to use these data to isolate skeletal correlates of vertical climbing in extant 

primates. Results from these analyses are used to interpret the functional morphology of 

the talocrural joint in early Miocene catarrhines and Plio-Pleistocene hominins to assess 

whether vertical climbing was a significant component of their locomotion.  

Kinematic data were collected on wild chimpanzees at the Ngogo study site in 

Kibale National Park. Vertical climbing kinematics in wild chimpanzees are consistent 

with biomechanical models that suggest climbing animals keep themselves close to the 

substrate to reduce the moment at their lower limb joints. In part, this is accomplished by 

extreme dorsiflexion at the talocrural joint in wild chimpanzees. Analyses of 63 video 

stills taken in lateral view find that chimpanzees dorsiflex at the ankle approximately 45˚. 

 xii



Flexion at the ankle during vertical climbing is accompanied by foot inversion and 

abduction. These joint positions keep the climbing chimpanzee close to the vertical 

substrate, thus reducing climbing costs associated with the muscular activity needed to 

counter downward forces acting on a large climbing ape. Similar degrees of dorsiflexion 

were observed on captive gorillas and orangutans and are known from published studies 

on gibbons and two ateline primates, Ateles and Lagothrix. Thus, in addition to vertical 

climbing quite often in the wild, hominoids and atelines appear to vertical climb in a 

kinematically similar manner. This is in contrast to cercopithecoid monkeys. 

Cercopithecoids rarely vertically climb, though when they do engage in this behavior, it 

is kinematically different from that practiced by hominoids and atelines. Data from the 

literature and ankle flexion calculated from video of climbing bouts in wild baboons and 

geladas in this study find that cercopithecoid monkeys do not experience extreme 

dorsiflexion at the ankle, and instead dorsiflex in the midfoot region during climbing. 

Based on the frequency and unique kinematics of vertical climbing at the talocrural joint 

in hominoids and atelines, it is predicted that these primates have skeletal morphologies 

adapted to frequent loading of the ankle in positions of dorsiflexion, inversion, and 

abduction. Specific predictions are based on data from the orthopaedic literature and 

kinetic work on climbing primates.  

 I test the hypothesis that hominoids and some atelines have an ankle morphology 

specifically adapted for bouts of vertical climbing using linear and angular measurements 

taken on 379 tibiae and 224 tali from adult wild primates. Skeletal correlates of abduction 

do not differentiate among the primates studied. However, vertically climbing primates 

have unique skeletal morphologies functionally related to loading of the talocrural joint in 

 xiii



dorsiflexion and inversion. Relative to cercopithecoids, hominoids and ateline primates 

have a mediolaterally wide anterior surface of the distal tibia, adapted for efficiently 

distributing the forces through the ankle during positions of extreme dorsiflexion. In 

addition, the great apes and ateline primates have an anteroposteriorly reduced tibial 

metaphysis, which may allow for an increased range of dorsiflexion. Finally, hominoids 

and atelines have significantly mediolaterally thicker medial malleoli than the 

cercopithecoids monkeys, consistent with kinetic data demonstrating medial loading of 

the midfoot during vertical climbing. Interestingly, few measures of the distal tibia and 

talus functionally related to dorsiflexion, inversion, or abduction differentiate arboreal 

and terrestrial cercopithecoids suggesting that whether they are in an arboreal or 

terrestrial situation, cercopithecoids have conserved ankle kinematics.  

 These data are used to interpret the morphology of catarrhine distal tibiae and tali 

from the early Miocene in order to assess whether any taxa possessed hominoid-like 

vertical climbing adaptations. Most tibiae and tali are either cercopithecoid-like or have 

no modern analogue. However, the large tibia from Napak, Uganda assigned to 

Proconsul major has a mediolaterally expanded anterior surface of the talar surface, a 

mediolaterally wide medial malleolus, and a mediolaterally expanded tibial metaphysis. 

These three features are functionally related to loading of the ankle in dorsiflexion and 

inversion and differentiate hominoids and atelines from cercopithecoids. It is thus 

unlikely that P. major was simply a scaled-up version of P. nyanzae and may instead 

demonstrate the role that body size can have on postcranial anatomy in arboreal 

catarrhine primates. There is also evidence from the talus that the unusual catarrhine 

Rangwapithecus may have engaged in extremes of dorsiflexion.  

 xiv



 In addition, skeletal correlates of vertical climbing in hominoids and atelines are 

used to test the hypothesis that any Plio-Pleistocene hominins were adapted for bouts of 

hominoid-like vertical climbing. Linear and angular measurements were taken on the 

distal tibiae and tali of African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla 

gorilla, Gorilla gorilla beringei) and modern humans. African apes differ from modern 

humans in the features functionally related to vertical climbing. None of the fifteen 

known hominin distal tibiae from 4.12 million to 1.6 million years ago possessed a 

mediolaterally expanded anterior rim of the articular surface for the talus. These 

hominins were thus poorly adapted for loading of the ankle in positions of extreme 

dorsiflexion and probably did not engage in ape-like vertical climbing. In fact, it is 

hypothesized that adaptations for bipedality in the talocrural joint result in a morphology 

maladapted for vertical climbing. In addition, coronal views of digitally sectioned fossil 

distal tibiae reveal that the perpendicular orientation of the ankle relative to the long axis 

of the tibia had evolved by 4.12 million years ago and would have hindered foot positions 

needed in vertical climbing bouts. This dissertation also introduces a technique by which 

isolated tali can be used to assess whether the tibia was perpendicularly oriented over the 

foot, and therefore whether the individual also possessed a valgus knee. This technique, 

by which the general morphology of the entire lower limb can be estimated from isolated 

tali will be quite useful for interpreting the morphology and locomotion in early 

hominins.  

 Because dorsiflexion is such an important foot motion for bringing the primate 

close to the tree during vertical climbing, inhibitors of dorsiflexion are hypothesized to be 

poorly developed in nonhuman hominoids and atelines. The posterior tibiotalar ligament 

 xv



(PTTL), which originates in the intercollicular groove in the medial malleolus, is an 

important dorsiflexion restrictor in the human ankle. Tests of the biomechanical 

properties of this ligament in baboons using an Instron tensiometer demonstrate that the 

ligament is structurally similar in humans and a non-human primate, and thus skeletal 

correlates can be used to reasonably assess ligament size, strength, and function. 

Hominoids and atelines have a weakly developed intercollicular groove and the 

attachment of the PTTL is close to the ankle axis of rotation, limiting the ligament’s role 

to an ankle stabilizer. In contrast, the intercollicular groove in terrestrial cercopithecoids 

and modern humans is significantly larger and positioned away from the axis of rotation, 

changing the role of the PTTL to one that restricts dorsiflexion. Implications for the early 

Miocene catarrhines and Plio-Pleistocene hominin fossil record are consistent with other 

aspects of talocrural functional morphology.    

 Despite the functional similarities between modern humans and fossil hominins, 

there are important differences as well. Many fossil hominin tali have a deeply keeled 

trochlear groove that some have suggested is related to an obliquely oriented tibia and 

thus an inverted set to the foot. Instead, it is argued that these hominins have not yet 

evolved an anterior talofibular ligament. The tubercle for this ligament is absent in early 

forms, but present on later Plio-Pleistocene hominin tali. The presence of the ligament 

may have increased in frequency as selection favored a hominin talocrural joint that was 

flatter as a result of increased body size and activity in Homo erectus. Thus, differences 

in morphology do not always mean differences in function. 

 Finally, the hypothesis that hominins may have compensated for reduced 

talocrural dorsiflexion by flexing at the midfoot is tested. The anatomical location of the 

 xvi



midtarsal break is reassessed using data from radiographs, dissections, EMG studies, and 

kinematic analysis of captive primates. Though the calcaneocuboid joint is an important 

region for establishing midfoot stability, the majority of midfoot flexion during the 

midtarsal break actually occurs between the cuboid and the lateral metatarsals. The 

metatarsal facets on the cuboid and the bases of the 4th and 5th metatarsals are 

significantly more curved on African apes than on modern humans or fossil hominins. 

These data suggest that midfoot stability, perhaps in the form of a longitudinal arch, was 

present by 3.2 million years ago. It is thus unlikely that hominins vertically climbed by 

flexing at the midfoot as modern cercopithecoids do. In addition, the presence of a 

longitudinal arch would have restricted midfoot grasping and severely compromised 

arboreality.  
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CHAPTER 1 
 

Introduction 
 

This dissertation uses kinematic data collected on wild chimpanzees to isolate 

skeletal correlates of vertical climbing in the talocrural joint. These results are then 

applied to the fossil record to assess whether the ankles of any Miocene catarrhines or 

Plio-Pleistocene hominins were adapted for ape-like bouts of vertical climbing.    

Vertical climbing, defined as the ascension of a tree that is angled greater than 45˚ 

relative to the ground, is a locomotion frequently performed by all of the extant large-

bodied apes1 and some ateline primates (Hunt, 1996; Gebo, 1996; Isler, 2005). Although 

cercopithecoid monkeys climb, they prefer to scramble up acutely inclined branches 

rather than ascend large-diameter vertical substrates in the wild (Hunt, 1992; Gebo, 

1995). In experimental settings, there are data suggesting that cercopithecoids vertically 

climb in a kinematically different manner than extant apes and atelines (Hirasaki et al., 

1993; 2000; Isler, 2002; 2004; 2005), though hominoid and cercopithecoid climbing 

kinematics have never been directly compared. However, it is unclear whether vertical 

climbing is a hominoid synapomorphy, or a behavior that evolved in parallel during the 

Miocene. Furthermore, although vertical climbing is not an important part of the 

locomotor repertoire of modern humans, the question of whether early hominins 

vertically climbed is still a subject of intense debate in the paleoanthropological 

                                                 
1 Throughout this dissertation, the word “ape” will be used to describe all non-human hominoids.  
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literature. Studies of vertical climbing kinematics have focused primarily on the knee, 

hip, elbow, and shoulder joints (Isler, 2003); however, because of its importance in 

positioning the foot against the vertical substrate, the talocrural joint, or ankle, may also 

be an important skeletal element for identifying correlates of vertical climbing. This 

dissertation uses a multi-faceted approach to test the hypothesis that non-human 

hominoids and some atelines possess an ankle morphology specifically adapted for bouts 

of vertically climbing.  

The talocrural joint, or ankle, is formed between the distal tibia, fibula, and talus. 

Although some refer to this joint as the upper ankle, and the subtalar joint as the lower 

ankle, proper anatomical terminology defines the talocrural joint as the only “ankle.” The 

ankle is, for the most part, a simple hinge joint with motion at the talocrural joint 

primarily restricted to dorsiflexion and plantarflexion, although the shape of the joint in 

humans permits some rotation and version as well (Barnett and Napier, 1952; Scott and 

Winter, 1991; Michelson and Helgemo, 1995; Hamel et al., 2004). Motions other than 

plantarflexion and dorsiflexion are in part a result of the morphology of the talus, which 

has been referred to as a “badly mounted wheel” (Rasmussen et al., 1983).  During 

dorsiflexion, the tibia internally rotates, the talus externally rotates, and the foot is in an 

abducted position. During plantarflexion, the tibia externally rotates, the talus internally 

rotates and the foot is in an adducted position (Scott and Winter, 1991; Michelson and 

Helgemo, 1995). The axis of rotation of the ankle runs roughly through the medial and 

lateral malleoli, which are slightly offset from one another in both the coronal plane and 

the transverse planes (Inman, 1976).  
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The ankle also contains a structurally complex array of ligaments that function 

primarily to stabilize the bony connections between the talus and the long bones of the 

lower leg. The distal tibia and fibula are attached to one another via the anterior and 

posterior tibiofibular ligaments. Three distinct ligaments, the anterior talofibular, 

calcaneofibular, and posterior talofibular ligaments, support the lateral side of the ankle 

joint by anchoring the fibula to the talus and calcaneus. The medial side of the joint is 

supported by the thick and strong deltoid ligament which connects the medial malleolus 

of the tibia to the talus, navicular, and calcaneus (Sarrafian, 1993; Leardini et al., 2000). 

Ligaments can stabilize a joint and/or restrict joint motion depending on their size, 

strength, and insertion relative to the joint axis of rotation (Alexander and Bennett, 1987). 

Skeletal correlates of the presence, size, and function of the ligaments of the primate 

ankle can help reconstruct whether the ankle of extinct Miocene catarrhines and Plio-

Pleistocene hominins were capable of the joint positions important during vertical 

climbing.   

It is not clear from the current literature on climbing kinematics, however, 

precisely what the talocrural joint does during vertical climbing bouts in hominoids, 

particularly in the great apes. Based on principles of biomechanics, a vertically climbing 

ape would reduce its climbing costs by pulling itself closer to the tree (Cartmill, 1972; 

Cartmill, 1985; Autumn et al., 2006). During climbing, the ape experiences a downward 

acting torque, which is the product of the force of gravity, the mass of the animal, and the 

distance between the tree and the center of mass. This torque must be balanced by 

muscular activity that prevents the animal from falling. The force of gravity and the mass 

of the ape cannot be changed during a climbing bout; however, the animal can reduce the 
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moment arm acting on the center of mass by pulling that mass closer to the tree, thereby 

reducing the muscular forces necessary to prevent falls. Close proximity between a 

climbing animal and the vertical substrate has been observed in a wide range of animals 

from geckos and squirrels to climbing black bears. However, unlike these other animals, 

hominoids do not possess large grasping claws or sticky finger pads and must instead 

reduce their distance from the vertical substrate by flexing, abducting, and inverting their 

lower limb joints.  

Data on climbing kinematics in wild chimpanzees is presented in Chapter 2. The 

hypothesis presented above that apes pull themselves close to a tree via joint flexion is 

tested at the talocrural joint using data collected on vertical climbing bouts in wild 

chimpanzees at the Ngogo study site in Kibale National Park, Uganda. These are the first 

data on climbing kinematics for any wild hominoid species. These results are compared 

to kinematic data from the literature and from climbing bouts of wild and captive 

cercopithecoids to examine whether predictable differences exist in the talocrural joints 

of cercopithecoids and apes.  

Results in Chapter 2 indicate that wild chimpanzees engage in extreme 

dorsiflexion, accompanied by foot abduction and inversion when climbing. These 

observations are used to make specific predictions about how the morphology of the 

distal tibia and talus of a vertical climber should differ from a non-vertical climbing 

primate.  

These predictions are tested in Chapter 3 using linear and angular measurements 

on the talocrural joint in 14 different extant anthropoid species. The hypothesis that there 

are differences in the talocrural morphology of those species engaging in frequent bouts 
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of vertical climbing (apes and atelines), and those rarely climbing vertical substrates 

(cercopithecoids, Cebus) is tested. Specifically, I examine whether the talocrural joint of 

vertical climbers is better adapted for the extreme positions of dorsiflexion, 

accompanying inversion, and abduction observed in wild chimpanzees. Principles of 

functional morphology are applied in this chapter, including assumptions that the range 

of motion at a joint in a living animal can be reconstructed from the articular geometry of 

isolated skeletal elements and that increased area of an articular surface is an adaptation 

for reducing stress experienced during joint loading. Results from these comparisons are 

applied to the fossil record of early Miocene catarrhines to assess whether chimpanzee-

like vertical climbing may have been a component of the locomotor repertoire of, for 

example, early purported hominoid species.  

In Chapter 4, the contentious hypothesis that early hominins may have been 

adapted for vertical climbing is tested using data from the talocrural joint. The hypothesis 

that differences exist in the talocrural joint morphology of African apes and modern 

humans is tested using linear and angular measurements of the distal tibiae and tali of 

adult wild chimpanzees and gorillas and three populations of modern humans. These data 

are compared to 30 fossil hominin tibiae and tali from 4.12 to 1.53 million years ago. 

There is a tendency to regard differences from the modern human condition as evidence 

that early hominins behaved more like our African ape cousins. In this chapter, it is 

expected that hominin tali and distal tibia will not be precisely like modern human ankles 

and will often fall in the morphological range between the modern African ape and 

modern human talocrural joint. Reasons for these differences include variations in body 

size and obstetrics, and mosaic patterns of evolutionary change in the hominin foot and 
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ankle. Instead of simply asking whether fossil hominin tibiae and tali differ from the 

modern human morphology, I investigate whether fossil hominins differ from modern 

humans in a functionally meaningful manner and in a way that would allow them to 

practice ape-like vertical climbing. In addition, my concern is not whether a hominin 

taxon occasionally climbed a tree, but whether the total morphological pattern inferred 

from the anatomy of the talocrural joint is consistent with both bipedalism and frequent 

climbing as has been suggested (e.g. Susman et al., 1984; Preuschoft and Witte, 1991).  

Extreme dorsiflexion is theoretically important for bringing the animal close to a 

tree during vertical climbing; an assertion supported by kinematic data on wild 

chimpanzees (Chapter 2). Therefore, it is important to recognize and identify not only 

how dorsiflexion can be enhanced but also how it can be inhibited. Chapter 5 of this 

dissertation examines the evolution of the posterior tibiotalar ligament (PTTL), which is a 

significant restrictor of extreme dorsiflexion in modern humans. In this chapter, I test 

whether this ligament has the same biomechanical properties in a non-human primate 

(Papio anubis). If so, then skeletal correlates of the size of the PTTL can be used to infer 

strength. Similarly, the role of a ligament as either a joint stabilizer or restrictor of motion 

is primarily a function of the region of origin and insertion relative to the axis of rotation 

of the joint it crosses. It is hypothesized therefore that primates with limited ankle 

dorsiflexion (Homo and cercopithecoids) will possess a PTTL that inserts farther from the 

axis of rotation.  

Chapter 6 addresses the question of why ankles of modern humans are quite 

susceptible to sprains of the anterior talofibular ligament. It begins by asking whether 

tilting of the talus away from the tibia is a means by which vertically climbing apes 
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augment their range of inversion. During dorsiflexion, the natural version movement of 

the talus is eversion. Yet, during vertical climbing, the great apes are able to put their foot 

in positions of inversion while dorsiflexed. This motion is most likely to occur primarily 

at the subtalar and transverse tarsal joints. However, based on human studies, it is 

reasonable to suggest that inversion can occur at the talocrural joint in the form of “talar 

tilting” (Cox and Hewes, 1979). Inversion, or talar tilting at the talocrural joint, is resisted 

partially by the anterior talofibular ligament (Cass and Settles, 1994; Leardini et al., 

2000; Hinterman, 2002). It is hypothesized that the anterior talofibular ligaments should 

differ between humans and vertically climbing apes and that these differences are related 

to inversion at the ankle.  

Chapters 3-6 apply an ape model to hypotheses of climbing in early Miocene 

catarrhines and Plio-Pleistocene hominins. This model suggests that extreme dorsiflexion 

at the talocrural joint, inversion, and abduction are essential joint movements for vertical 

climbing. In Chapter 2 it is shown that cercopithecoids, though infrequent vertical 

climbers, utilize a slightly different kinematic strategy and do not flex at the ankle, but do 

so instead at the midfoot. Chapter 7 addresses the possibility that dorsiflexion in the 

midfoot region, often called the “midtarsal break”, may be an alternative means by which 

a primate can pull its body close to a tree during vertical climbing bouts. It is unclear 

where midfoot flexion occurs anatomically, with some suggesting the calcaneocuboid 

joint and others the cuboid-metatarsal joint. This study employs radiographs, dissections, 

EMG analysis, and kinematics of terrestrial walking in captive primates to test these 

alternative hypotheses regarding the location of the midtarsal break. Skeletal correlates of 

midfoot mobility are then measured and applied to the hominin fossil record to assess 
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whether our early ancestors had a mobile midfoot and could vertically climb in a 

cercopithecoid-like manner.  
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CHAPTER 2 
 

Kinematics of the talocrural joint during vertical climbing bouts in wild 
chimpanzees. 

 

Abstract 

 Vertical climbing, a behavior frequently performed by extant apes and atelines, 

has figured prominently in hypotheses of locomotor evolution in the hominoids and 

hominins. It has even been proposed that vertical climbing pre-adapted hominins for 

bipedality.  However, whether any known Pliocene hominins or Miocene catarrhines 

engaged in significant amounts of vertical climbing is still a subject of debate. Previous 

work on vertical climbing kinematics has focused on the upper limb, hip and knee joints, 

with less attention paid to the ankle joint. This study focused specifically on the 

kinematics of the talocrural joint. Video data were collected from 166 separate climbing 

bouts by wild chimpanzees at Ngogo, Kibale National Park, Uganda. Chimpanzees 

engage in extreme dorsiflexion at the talocrural joint during single stance phase of 

climbing, flexing the ankle approximately 45˚. This helps bring the ape closer to the tree 

thus reducing the torque at the ankle, knee, and hip and increasing the efficiency of 

climbing. The foot is also placed in a position of abduction and inversion during vertical 

climbing bouts. Similar climbing strategy was observed during vertical climbing in 

captive orangutans and gorillas, but is quite distinct from the climbing approach used by 

cercopithecoids. Furthermore, the range of dorsiflexion achieved by chimpanzees during 

vertical climbing exceeds the dorsiflexion possible in the human ankle without severe 
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injury. These data are useful for identifying bony morphology in the talocrural joint 

adapted for vertical climbing and assessing whether ape-like vertical climbing was part of 

the locomotor repertoire in any known Miocene catarrhines and Plio-Pleistocene 

hominins.  

 

Introduction 

Apes are large-bodied fruit eaters well adapted for orthograde and suspensory 

positional behaviors in an arboreal environment (Young, 2003; MacLatchy, 2004; 

Pilbeam and Young, 2004). Locomotion, including vertical climbing, has featured 

prominently in hypotheses of hominoid evolution, and the identification of hominoid 

synapomorphies (Avis, 1962; Temerin and Cant, 1983; Hunt, 1991; Gebo, 1996; Doran, 

1996; MacLatchy, 2004; Isler, 2005; Thorpe and Crompton, 2006). Based on behavioral 

observations of modern apes, Hunt (1991) suggested that arm hanging and vertical 

climbing are the most important ape locomotor adaptations. However, he noted that while 

apes vertically climb more often than monkeys, only arm hanging is kinematically unique 

to the apes and thus a true hominoid synapomorphy (Hunt, 1991). However, Thorpe and 

Crompton (2006) collected data on orangutans suggesting that general orthogrady, and 

not suspensory behavior per se, is the unique ape locomotor adaptation. Doran (1996) 

supported earlier work by Fleagle (1976) that quadramanous climbing distinguishes the 

apes from other catarrhines. More specifically, it has been argued that vertical climbing is 

a distinct ape locomotion and may have been practiced by the last common ancestor of 

the hominoids (Isler, 2003; Isler and Thorpe, 2003; Isler, 2005). These hypotheses have 

often been based on data from captive primates or qualitative assessments of locomotion 
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in the wild. More data on comparative kinematics of climbing in wild primates are 

necessary to determine the extent to which apes vertically climb. 

In addition to its importance in hominoid evolution, vertical climbing has also 

featured prominently in hypotheses of hominin evolution and the origins of bipedalism 

(Fleagle et al., 1981; Senut, 1988). EMG studies provide evidence that vertical climbing 

preadapted hominins for bipedality. EMG activity patterns of hip and thigh musculature 

(Stern, 1971; Vangor, 1977; Vangor and Wells, 1983), gluteal muscles (Stern and 

Susman, 1981), and brachial muscles (Tuttle and Basmajian, 1974) demonstrate that the 

muscles active during bipedal movement are more often active during vertical climbing 

than during quadrupedal walking. Kinematic data on extension of the hip and knee also 

suggests that vertical climbing would preadapt a primate for bipedality more than 

quadrupedal walking would (Yamazaki et al., 1983; Yamazaki and Ishida, 1984; Payne, 

2001). An arboreal origin for bipedalism has recently been suggested using orangutans as 

a model for a prebipedal hominin (Crompton et al., 2003; Thorpe et al., 2007). These 

hypotheses suggest that orthograde scrambling and hand assisted bipedalism practiced by 

modern orangutans serve as preadaptations for bipedality (Crompton et al., 2003). Thorpe 

et al. (2007) found that hand assisted bipedality occurred most often in wild orangutans 

during feeding bouts in a small branch environment. Using orangutan locomotion as a 

model, these authors suggest that the kinematics of bipedalism, such as an extended 

hindlimb, may have evolved in a terminal branch setting. This hypothesis is supported by 

biomechanical data of bipedal walking in orangutans in which the kinematics of the hip 

and knee better adapt these Asian apes for bipedalism than the African apes (Payne, 

2001). However, evidence from the hindfoot (Gebo, 1996) and the wrist (Richmond et 
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al., 2001) indicate that bipedalism may have been preceded by a terrestrial, rather than 

arboreal, phase. These workers recognize the importance of vertical climbing, but argue 

that the last common ancestor would have employed knuckle-walking while moving 

between food patches, much like modern chimpanzees do. Tuttle (1974) was the first to 

propose that knuckle-walking may be a morphological compromise for an ape adapted 

for vertical climbing and suspensory behavior that moves terrestrially between food 

patches.   

Testing these models with the fossil record has been hampered by relatively few 

postcranial remains of the earliest hominins. However, even for hominins well 

represented in the fossil record, like Australopithecus afarensis, interpretations have 

yielded mixed results. Some argue that adaptations for bipedalism restrict arboreality and 

that early hominins could not engage in much arboreal locomotion once bipedalism 

evolved (Lovejoy, 1978; Latimer et al., 1987; Latimer and Lovejoy, 1990a; Latimer and 

Lovejoy, 1990b; Latimer and Lovejoy, 1990; Latimer, 1991; Lovejoy, 2005a; Lovejoy, 

2005b; Lovejoy, 2007; Sawyer and Lovejoy, 2008). In contrast, others find abundant 

evidence for climbing in the postcrania of australopithecine fossils (Prost, 1980; Stern 

and Susman, 1983; Susman and Stern, 1984; Preuschoft and Witte, 1991; Heinrich et al., 

1993; Deloison, 2003; Alemseged et al., 2006). Richmond et al. (2001, p. 100) noted the 

importance of kinematic studies in interpreting fossil remains and contributing to this 

debate, writing “It is critical that we understand the biomechanics and functional anatomy 

involved in knuckle-walking, climbing, bipedalism, and other forms of locomotion so 

that reliable interpretations of fossils are possible.” 
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Arboreal behavior in apes and cercopithecoids 

 Many studies have attempted to quantify the amount of vertical climbing and 

arboreal activity engaged in by wild apes and cercopithecoids (Table 2.1). However, 

these data have been variously reported as a % of total activity, % of arboreal activity or a 

% of total locomotor activity and thus are not always directly comparable (Hunt, 2004). 

Furthermore, the term “climbing” has been used in some studies to encompass any 

arboreal ascent, whereas other studies separate climbing from the more specific “vertical” 

climbing using Hunt’s definition that limits vertical ascents to those on substrates angled 

at greater than 45˚ from the horizontal (Hunt, 1996). An attempt to standardize the results 

found that vertical climbing composed these percentages of total locomotor budget: 

gibbon 15.5%, siamang 32.2%, orangutan 20.6%, bonobo 50.4% (arboreal budget only), 

chimpanzee 6.5%, mountain gorilla <1%, lowland gorilla 19.7%, and baboon 0.7% 

(Hunt, 2004). Hunt (2004) regarded the gibbon, siamang, orangutan, and lowland gorilla 

values as estimates and the chimpanzee, mountain gorilla, and baboon values as reliable. 

The data on the amount of climbing and vertical climbing practiced by extant primates 

will be further reviewed below. 

 Apes are arboreal climbers (Table 2.1). The siamang (Syndactylus symphalangus) 

dedicates 37% of its total travel to climbing (Fleagle, 1976), though this study did not 

differentiate between climbing and vertical climbing specifically. The agile gibbon 

(Hylobates agilis) has been observed to spend 14% of its total locomotor activity 

climbing (Gittins, 1983). Female orangutans are almost exclusively arboreal though male 

orangutans will regularly come to the ground to travel between food resources 

(MacKinnon, 1974; Rodman and Mitani, 1987). Three separate studies of wild 
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orangutans (Pongo pygmaeus) have obtained relatively consistent results of the total 

travel expenditure spent climbing. Orangutans have been found to vertically climb 9-13% 

(Sugardjito and van Hooff, 1986), 18% (Cant, 1987), and 16% (Thorpe and Crompton, 

2006) of their total locomotion.  

Table 2.1 Frequency of vertical climbing in extant anthropoids.  
Species Source Vertical Climbing 

Frequency 
Criteria 

Pan troglodytes Doran, 1993 11% Of total locomotion 
Pan troglodytes Hunt, 1989; 

1992 
5.5% Of total locomotion 

Pongo pygmaeus Cant, 1987 18% Of total travel 
Pongo pygmaeus Sugardjito & van 

Hooff, 1986 
9-13% Of total locomotion 

Pongo pygmaeus Thorpe & 
Crompton, 2006 

16% Of total locomotion 

Gorilla gorilla 
gorilla 

Remis, 1995 48% Of arboreal travel 

Gorilla gorilla 
beringei 

Watts & Tuttle, 
1985 

1.6% Of daily activity 

Hylobates agilis Gittins, 1983 14% Of total locomotion 
Symphalangus 
syndactylus 

Fleagle, 1977 37% climbing (not 
specifically vertical) 

Of total travel 

Papio anubis Hunt, 1989 0.4-1.2% Of arboreal activity 
Papio anubis  Rose, 1977 0.2% Of adult daily 

activity 
Lagothrix 
lagotricha 

Cant et al., 2001 3.7% Of total locomotion 

Ateles belzebuth Cant et al., 2001 4.2% Of total locomotion 
Alouatta seniculus Guillot et al., 

submitted 
6.0% Of total locomotion 

 
 The African apes are more terrestrial than the Asian apes, but they too spend a 

considerable amount of their total travel in an arboreal environment. Doran (1996) has 

argued that climbing is second only to terrestrial quadrupedalism in terms of the most 

frequently used locomotor behaviors in the African great apes. Hunt (1989; 1992) found 

that chimpanzees at Gombe and Mahale (Pan troglodytes schweinfurthii) spent 5.5% of 

their total locomotor budget vertically climbing; whereas Doran (1993) found that 
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chimpanzees in the Tai forest (Pan troglodytes verus) spend 11% of their total locomotor 

activities vertically climbing. Interestingly, female chimpanzees climb more often than 

male chimpanzees at Gombe and Mahale, but there appear to be no sex differences in 

climbing frequency among the chimpanzees in the Tai forest (Doran, 1993a, Doran, 

1993b, Doran and Hunt, 1994). Chimpanzees climb primarily to obtain arboreal food 

resources. Hunt (1998) found that 70% of the total time chimpanzees at the Mahale and 

Gombe study sites spend in trees, they are foraging for food. Bonobos (Pan paniscus) 

were originally considered to be almost exclusively arboreal (Susman, 1984); however, 

these bonobos were not habituated to human presence and the amount of time they spent 

in trees could not be accurately assessed (Mitani, pers. comm.). Kano (1983) found that 

the bonobos at Yalosidi in the present day Congo travel terrestrially between food 

sources, much like chimpanzees. Lowland gorillas (Gorilla gorilla gorilla) spend 48% of 

their arboreal travel time climbing (Remis, 1995). Remis (1995) has even suggested that 

female gorillas are as arboreal as chimpanzees. Most of the food resources consumed by 

lowland gorillas are arboreal, and gorillas will typically build night nests in trees (Tutin, 

1996). In contrast, mountain gorillas (Gorilla gorilla beringei) are considerably more 

terrestrial than lowland gorillas, though they do spend 2.9% of their total daily activity 

budget in trees, of which 56% of the time is spent climbing (Tuttle and Watts, 1985). 

This difference in arboreality between the two gorilla species is at least partially a 

function of ecological differences, with few trees growing 10,000 feet above sea level in 

the Virunga Mountains.  

 Relative to what is known about wild apes, the locomotion of wild 

cercopithecoids is less understood. There is considerable variation in cercopithecoid use 
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of landscapes, from the mostly terrestrial patas monkey (Erythrocebus patas) to the 

mostly arboreal proboscis monkey (Nasalis larvatus) (Fleagle, 1999). Because this 

current study focuses on wild chimpanzees, the locomotion of a cercopithecoid monkey 

that moves both terrestrially and arboreally would provide a valuable comparison. The 

few data that exist on wild baboons are relevant in this context. Baboons spend a limited 

amount of their activity budget climbing (Hunt, 2004). Rose (1977) found that olive 

baboons (Papio anubis) spend less than 1% of their total daily activity budget climbing, 

and this is done primarily during play bouts (54.2%) and mostly by infants. Adult 

baboons climbed only 0.2% of their total daily activity budget (Rose, 1977). Similarly, 

Hunt (1989) found that baboons rarely climbed vertically, recording climbing in only 0.4-

1.2% of their total arboreal activity. Hunt (1992) also noted that while chimpanzees at 

Gombe and Mahale vertically climb, baboons ascend similar vertical substrates by 

leaping and walking up angled branches. A similar climbing strategy has been observed 

in wild black and white colobus monkeys (Colobus guereza), red colobus monkeys 

(Procolobus badius), grey-cheeked mangabeys (Lophocebus albigena), and red-tailed 

monkeys (Cercopithecus ascanius) (all personal observations in Kibale National Park).  

 In contrast to Old World cercopithecoid monkeys, many New World ateline 

primates vertically climb, though not quite as often as apes do. Cant et al. (2001) found 

that vertical climbing comprised 3.7% of total locomotion in Lagothrix lagotricha and 

4.2% of total locomotion in Ateles belzebuth. The howler monkey (Alouatta) spends 6% 

of its total locomotor activity vertically climbing (Guillot et al., in press).  

 

Comparative vertical climbing kinematics 
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Prior research has not made it clear whether apes and cercopithecoids vertically 

climb in a kinematically distinct manner. A study of chimpanzees and baboons in the 

Gombe and Mahale National Parks of Tanzania suggested that although chimpanzees 

climb more often than baboons, they do so in a kinematically similar manner (Hunt, 

1991). This was suggested despite observations that baboons either pulse climb or leap up 

angled branches of a tree; behaviors rarely performed by chimpanzees (Hunt, 1989). 

Gebo (1996) suggested that vertical climbing in apes may be kinematically different than 

in monkeys, but noted presently available data cannot be used to resolve this important 

question. 

No study has directly compared the vertical climbing kinematics of non-human 

hominoids and cercopithecoids. However, the two groups have been indirectly compared 

via observations of atelines. Kinematic data indicate that captive Japanese macaques 

(Macaca fuscata) vertically climb in a different way than do spider monkeys (Ateles 

geoffroyi) (Hirasaki et al., 1993; Hirasaki et al., 2000). Spider monkeys exhibit greater 

extension at the hip and knee, and greater flexion at the ankle than macaques (Hirasaki et 

al., 1993). Additionally, force plate data produced during vertical climbing bouts indicate 

that in Ateles, the hindlimb forces are greater than the forelimb forces whereas in 

Macaca, they are approximately the same (Hirasaki, et al., 1993).  

Additional work on vertical climbing in captive and semi-wild primates found 

that the kinematics of vertical climbing in ateline primates is quite similar to the 

kinematics of vertical climbing in apes. Isler (2002; 2003; 2004; 2005) compared vertical 

climbing kinematics in bonobos (Pan paniscus), lowland gorillas (Gorilla gorilla 

gorilla), gibbons (Hylobates lar), orangutans (Pongo pygmaeus), spider monkeys (Ateles 
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belzebuth), and woolly monkeys (Lagothrix lagotricha). These studies found that the 

kinematics of climbing are quite similar in apes and atelines. Unlike cercopithecoids, the 

apes and atelines had an extended hip during the push-off phase of vertical climbing 

(Isler, 2003; Isler, 2004; Isler, 2005). Despite the similarities in climbing kinematics, 

important differences also exist. Pongo exhibited the greatest flexion at the hip, but less 

at the knee than African apes or atelines (Isler, 2003). Although African apes and atelines 

climbed in a kinematically similar fashion (Isler, 2003; Isler, 2004), the former positioned 

themselves closer to the vertical substrate through flexion at the elbow and the knee than 

did the latter (Isler, 2003). Bonobos (Pan paniscus) vertically climbed in a faster, more 

efficient manner than gorillas (Isler, 2002), and bonobos exhibited greater knee flexion 

than Gorilla (Isler, 2003; Isler, 2005). Interestingly, it was observed that a juvenile 

Gorilla and juvenile Pongo and the smaller-bodied Hylobates positioned themselves 

farther from the vertical substrate than the adult great apes, perhaps because their smaller 

mass results in a smaller moment at the joints of the lower limb (Isler, 2003; Isler, 2005). 

Nevertheless, the results of these studies suggest that the kinematics of vertical climbing 

in apes and atelines fundamentally differ from that observed in cercopithecoids. Because 

of the kinematic similarities between apes and atelines (Isler 2003, 2004, 2005) and 

because Ateles has been shown to vertically climb in a kinematically distinct manner 

from Macaca (Hirasaki et al., 2003; Hirasaki et al., 2000), there is reason to suspect that 

apes and cercopithecoids may vertically climb in a kinematically different way (contra 

Hunt, 1989; 1991; 1992).  

Data from the literature thus suggests two important differences between apes and 

atelines, and the cercopithecoid monkeys. 1.) Apes and atelines vertically climb more 
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often than cercopithecoids in the wild; and 2.) apes and atelines may vertically climb in a 

kinematically different manner than cercopithecoids. Whether these conclusions can be 

generalized is unclear because prior kinematic data have been collected primarily on 

captive primates usually ascending rope-like vertical substrates. 

Several studies have examined the biomechanics of vertical climbing of 

vertebrates in general (Preuschoft, 1970; Cartmill, 1972; Bock and Winkler, 1978; 

Cartmill, 1985; Preuschoft et al., 1992; Autumn et al., 2006). Preuschoft et al. (1992) 

stated that the “energetically most expensive motion is ascending trees” because the 

animal has to propel itself directly against the downward force of gravity. Because the 

downward force due to gravity is directly proportional to the mass of the animal, 

climbing in large bodied-apes presents a particularly difficult challenge and thus climbing 

adaptations are likely to evolve to reduce these costs.  

A free body diagram modeling the forces imposed on a vertically climbing ape 

demonstrates that several factors can influence the efficiency of climbing (Figure 2.1). 

The moment produced by the climbing ape is a function of the acceleration due to 

gravity, the mass of the animal, and the distance the animal is from the tree. This 

moment, termed the “overturning moment” by Autumn et al. (2006) can best be 

conceptualized if one imagines that the chimpanzee in Figure 2.1 lets go of the tree with 

his hand and begins to fall backwards. This overturning moment must be balanced by a 

stabilizing moment at both the foot and the hand. The balancing moment is a product of 

the vertical force of the foot operating at a horizontal distance which is approximately the 

diameter of the vertical substrate and the horizontal force of the foot operating at the 

distance between the hand and the ipsilateral foot (Cartmill, 1972). Thus, the relationship  
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Figure 2.1. Free-body diagram of forces on chimpanzee during vertical climbing. 

 
Figure 2.1. Biomechanics of vertical climbing (simplified from Cartmill, 1972; Cartmill, 
1985; Autumn et al., 2006). A moment that is a function of the mass of the chimpanzee 
(m), the force of gravity (g), and the distance that the chimpanzee is from the tree (d) is 
countered by a vertical force applied by the grasping foot (Fv) acting at a distance that the 
foot is from the fulcrum (t), plus a horizontal force (Hh) applied by the hand acting at a 
distance between the grasping hand and the foot (h). Dorsiflexion at the ankle pulls the 
ape closer to the tree thus reducing its overturning moment, and reducing the force 
necessary to counteract this moment.  
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between the mass of the animal (m), the force due to gravity (g), the distance the center 

of mass is from the tree (d), the horizontal force produced by the foot (Fh), the vertical 

force produced by the foot (Fv), the distance between the hand and the foot (h), and the 

diameter of the tree (t) is: 

mgd = Fhh + Fvt 

However, because the forces must also balance, the horizontal force produced by the 

hand is equal and opposite to the horizontal force produced by the foot. Thus, when the 

horizontal force of the hand (Hh) is substituted into the above equation, the relationship 

between the variables is: 

mgd = Hhh + Fvt 

 

The force necessary to stabilize the climbing animal can be reduced if the distance 

between the grasping hands and feet is increased. This relationship may help explain why 

long arms are considered to be an adaptation for climbing in the apes by reducing the 

forces necessary to hold onto the vertical substrate (Cartmill, 1985), and why a strong 

upper limb has been identified as a climbing adaptation in extant and extinct hominoids 

(Cartmill, 1985; Isler, 2003). The moment is also balanced by the force produced by the 

foot and thus a grasping foot is a critical adaptation for vertical climbing in the apes 

(Preuschoft, 1970; Cartmill, 1985; Latimer and Lovejoy, 1990). On the left hand side of 

the equation, acceleration due to gravity is a constant, as is, for the purpose of this 

exercise, the mass of the animal. Therefore, the moment attempting to overturn the 

animal can be reduced by reducing the distance that the climbing ape is from the tree. 

This can be achieved by having short legs abducted and flexed at the hip, flexed at the 
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knee and ankle, and inverted in the midfoot region. Several studies on the biomechanics 

of vertical climbing have emphasized the importance of minimizing the distance between 

the center of mass of the animal and the vertical substrate (Preuschoft, 1970; Cartmill, 

1972; Cartmill, 1985; Preuschoft et al., 1992). Experimentally, limb flexion has been 

shown to be as a vertical climbing strategy employed by gecko lizards (Autumn et al., 

2006). Furthermore, work on captive apes has found that during vertical climbing larger 

bodied adult apes pull their bodies closer to the vertical substrate than juvenile apes or the 

small-bodied gibbons, presumably to reduce the costs associated with climbing (Isler, 

2005). It is hypothesized in this study that dorsiflexion of the talocrural joint in non-

human hominoids is one of a suite of adaptations (also including hip abduction, hip and 

knee flexion, and foot inversion) to reduce the force of the overturning moment arm 

during bouts of vertical climbing.  

 This study examined the kinematics of the talocrural joint during vertical 

climbing bouts in wild chimpanzees to test the following hypotheses: 

1. As has been shown for the hip and the knee (Isler, 2003; Isler, 2005), large bodied 

apes help reduce their climbing costs by pulling their bodies close to the substrate. 

It is hypothesized that that flexion at the talocrural joint also contributes to 

reducing the distance between the climbing ape and the vertical substrate.  

2. Data tentatively suggest that the kinematics of climbing fundamentally differ 

between apes and cercopithecoids, though this has never been assessed at the 

ankle. This study tests the null hypothesis that there are no differences in the 

kinematics of the talocrural joint between vertically climbing apes and 

cercopithecoids.  
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Materials and Methods 

 Observations of wild chimpanzees of the Ngogo community in the Kibale 

National Park, Uganda were made during three weeks in June 2006 and July-August 

2007. The Kibale National Park is located in western Uganda, east of the Rwenzori 

Mountains. The Ngogo study site is in the north-central portion of the park, 

approximately 1400 meters above sea level. At this elevation, the forest comprises a 

combination of lowland and montane rainforest, consisting of primarily undisturbed old 

growth forest with a continuous 25-30 meter high canopy. The Ngogo community of 

common chimpanzees (Pan troglodytes schweinfurthii) is exceptionally large, with 

approximately 150 individuals. The unusual size of the community facilitates finding and 

following chimpanzees daily.  

Chimpanzees were followed for a period of three weeks and filmed 

opportunistically when vertical climbing. Observations were made primarily on adult 

males, though some juveniles and females were studied as well. Chimpanzee vertical 

climbing was filmed as the animal made its ascent from the forest floor to the highest 

height achieved in the forest canopy. Video data was collected with a Canon GL2 hand-

held digital video recorder. The distance between the video camera and climbing 

chimpanzee varied because climbing episodes were filmed in real time as they occurred. 

The distance between the observer and climbing chimpanzee was typically between 5 and 

10 meters. Attempts were made to film chimpanzees in lateral view as they ascended the 

tree. The individual identity of the climber was usually known, though there are cases in 

which the climber could only be identified by age and sex. Additionally, the 
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circumference of the tree was measured at breast height. If the chimpanzee used one 

vertical substrate to access food resources in another tree, efforts were made to measure 

the circumference and diameter at breast height of both trees. In total, 166 separate 

climbing bouts were filmed and tree circumferences obtained.  

 Video data was downloaded and the usability of the video was assessed using the 

program Windows MovieMaker. Frames of vertical climbing were viewed individually 

with a temporal resolution of 70 msec. Several criteria were applied to identify video that 

could be used to assess dorsiflexion at the talocrural joint within a reasonably accurate 

range.  

First, the animal had to be in lateral view to estimate dorsiflexion at the talocrural 

joint. Dorsiflexion at the talocrural joint was always assessed as the maximum angle 

achieved by the ankle nearest to the observer. Video in which the opposite hip or 

shoulder of the chimpanzee could be easily seen or was completely obscured by the tree 

during climbing were eliminated. Only video in which the far hip and shoulder were 

obscured by the near hip and shoulder were considered lateral.  

Second, videos of lateral views had to be captured within 10 meters from the 

ground. This requirement was established by testing the effect of height on angle 

measurement on a University of Michigan building. Window corners of 90˚ angles were 

filmed from different heights at a distance of 10 meters. The corner angle of windows 

filmed less than 10 m above the ground could be accurately measured to within 5˚ of 90˚. 

The angle of window corners higher than 10m from the ground had errors greater than 5˚.  

Thus, video in which the first few steps of ascent were captured in lateral view could be 

analyzed. This proved difficult as there was a considerable amount of ground cover at 
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Ngogo. Thus, the video stills that met the above criteria generally were taken from 

chimpanzees that were approximately 2-5 meters off the ground at a distance of 

approximately 5-10 meters. Of the 166 videos obtained from vertically climbing 

chimpanzees, 63 met the above criteria and were measured.  

Video stills of the initial steps of the 63 chimpanzees vertically climbing taken in 

lateral view were imported into the program Image J. The angle tool was used to measure 

the angle of dorsiflexion at the talocrural joint. This was taken by drawing a straight line 

from the knee to the heel, and another straight line from the heel through the 

metatarsophalangeal joint of the 5th metatarsal. The angle was then subtracted from 90˚ to 

make it comparable to results from the literature. The knee to heel line was drawn as an 

approximate bisection of the tibia, whereas the long axis of the foot followed the 

skin/hair line which runs along the lateral side of the foot (Figure 2.2). Confidence in 

these lines to approximate dorsiflexion in the ankle was based on dissections of the lower 

limb of a chimpanzee at the Harvard Museum of Comparative Zoology, and manual 

manipulation and measurement of live chimpanzee lower limbs performed during 

veterinary procedures on an adult male and an adult female at the Detroit Zoo in which 

the location of the knee, ankle, and heel were assessed. Dorsiflexion angles of the same 

video stills measured a month apart suggest that maximum measurement error is ± 5˚. 

When measurements were taken to the nearest 5˚, error was reduced to zero.  

Foot inversion associated with vertical climbing was assessed qualitatively from 

both lateral and posterior views of climbing from all 166 vertical climbing bouts captured 

on film. Abduction was estimated by measuring the angle between the foot and the tibia 
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Figure 2.2. Method of estimating dorsiflexion at talocrural joint in vertically climbing 
wild chimpanzee. 

 
Figure 2.2. Video stills in which the vertically climbing chimpanzee is in lateral view and 
<10 meters from the ground were captured (see text for more details). In this example, a 
male chimpanzee is experiencing maximum dorsiflexion of the right foot during push-off 
of the opposite foot. To estimate the degree of dorsiflexion, the ankle region is enlarged, 
a line is drawn down the long axis of the tibia and along the hair-skin line of the lateral 
aspect of the foot. The angle measured is then subtracted from 90˚ so that high angles 
indicate extreme dorsiflexion whereas low angles represent little ankle dorsiflexion. 
 

 



 27

Figure 2.3. Method for approximating foot abduction during vertical climbing bouts in 
wild chimpanzees.  

 
Figure 2.3. Video stills in which the vertically climbing chimpanzee is in posterior view 
and <10 meters from the ground were captured (see text for more details). In this 
example, which is taken from a photograph and not used in this study except to illustrate 
this measurement, a male chimpanzee is abducting the right foot during a vertical 
climbing bout. To estimate the degree of abduction, a straight line is drawn down the 
long axis of the tibia, and another line bisects the abducted foot. The angle measured 
between these two lines is the approximate amount of foot abduction.  
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while observing vertical climbs in posterior view (Figure 2.3). Of the 166 vertical climbs 

filmed, only 27 were taken in posterior view, defined as film in which the medial aspect 

of the arm or leg, and the anterior aspect of the torso is not in view.  

Comparative kinematic data were obtained in the same manner as described 

above from additional video data captured on both wild and captive primates. To assess 

whether the results obtained from filming chimpanzees in the wild were comparable to 

other great apes, film was taken of gorillas, and orangutans in a more controlled captive 

setting at the Toledo Zoo. The gorillas consisted of a mixed group of adolescent and adult 

males and females (n=8) in an indoor habitat containing vertically oriented ropes with a 

diameter of approximately 5 cm. Eight gorilla climbing bouts fit the criteria described for 

the wild chimpanzees above. Additionally, film was taken of a family of orangutans 

consisting of an adult male, female, and juvenile, and nine vertical climbing bouts met 

the established criteria described above and had ankle angles that could be quantified.   

To assess whether the results obtained were comparable to cercopithecoid 

monkeys, video of wild chacma baboons (Papio ursinus) in the Moremi Game Reserve in 

the Okavango Delta in Botswana and wild geladas (Theropithecus gelada) in the Simiens 

Mountains National Park were provided by Jacinta Beeher and Thore Bergman of the 

University of Michigan. Vertical climbing bouts of geladas (n=2) and baboons (n=1) 

were in lateral view and able to be quantified. Additionally, video was taken and 

analyzed of a single vertical climbing bout in a captive Allen’s swamp monkeys 

(Allenopithecus nigroviridis) at the Toledo Zoo. Because few climbing bouts were 

captured on video, the results of the kinematic analysis of these cercopithecoids should be 

considered preliminary.       
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Results 

 Vertical climbing bouts were filmed in 137 adult males, 25 adult females, and 4 

juvenile chimpanzees. Forty-seven different individuals (10 female, 37 male) were 

filmed. Chimpanzee dorsiflexion at the talocrural joint during vertical climbing bouts was 

measured on 63 vertical climbing bouts from a minimum of 30 different individual 

chimpanzees (5 female, 25 male). Maximum dorsiflexion at the talocrural joint during 

vertical climbing averages 45.5˚ ± 7.1˚ with a range of 31.7˚ to 57.7˚. When 

measurements were taken to the nearest 5˚, the average was 45˚ ± 5˚ with a range of 30˚ 

to 60˚. There were no difference in dorsiflexion measured between climbing males and 

females (t=0.39, df=51, p=0.70). Maximum dorsiflexion occurred during lift-off of the 

opposite hand and foot for each chimpanzee. Thus, maximum dorsiflexion occurred when 

the weight of the animal was being supported by a single foot and the ipsilateral hand. 

Maximum dorsiflexion occurred prior to any contribution to flexion from midfoot flexion 

(see discussion). Midfoot flexion only occurred during the initial push-off phase of 

climbing.  

Abduction of the foot quantified from 27 separate vertical climbing episodes from 

23 adult males and four adult females. The abduction angle was approximately 28.8˚ ± 

6.6˚.  

 The average diameter of tree climbed was 13.9 cm ± 7.7 cm (Figure 2.4). 

Seventy-seven percent of climbs were performed on trees between 10-25 cm, whereas 

only 9% were on trees less than 10 cm, and 14% on trees greater than 25 cm. There were 
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no differences found between the diameter of tree climbed by adult males and those 

climbed by adult females (t=0.735, df=162, p=0.46).  

There were differences, however, in the diameter of tree climbed during June of 

2006 and July-August of 2007 (t=2.51, df=162, p=0.01). In June 2006, the average tree 

diameter climbed was 15.6 cm ± 7.2 cm whereas in July-August of 2007 the average tree 

diameter was 12.6 cm ± 8.0 cm. In June 2006, Uvariopsis congensis was fruiting and 

chimpanzees were preferentially climbing this tree. In July-August 2007, U. congensis 

was not fruiting, and the chimpanzees were often climbing lianas to obtain fruit from 

large-diameter Ficus and Chrysophyllum trees. There were 16 cases measured in July-

August 2007 in which the chimpanzees climbed smaller diameter trees or lianas (9.2 cm 

± 5.2 cm)  to get into large diameter ones (50.9 cm ± 10.7 cm). When climbing bouts 

using lianas (n=10) are removed from the July-August 2007 data, the difference between 

the years measured is reduced (t=1.95, df=152, p=0.05).  

Observations of gorillas, and orangutans at the Toledo Zoo demonstrate that 

similar ranges of dorsiflexion are employed by climbing apes ascending ~5 cm vertical 

ropes in captivity. Gorillas (n=8) flexed to approximately 50.6˚ ± 11.4˚, and orangutans 

(n=9) 44.7˚ ± 8.5˚. Ascent of a vertical rope substrate was performed in a kinematically 

different manner in the cercopithecoid Allenopithecus, however. Flexion occured 

primarily in the midfoot region, and dorsiflexion at the talocrural joint was measured to 

only 25˚.  

Limited data from video taken on wild cercopithecoids yield similar results as 

those obtained on Allenopithecus. Geladas (Theropithecus gelada) have little opportunity 

to climb as their habitat in the Ethiopian highlands contains very few trees. However, 
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video of two vertical ascents by an adult and an infant gelada suggested that these 

primates choose to leap up alternatively angled branches during climbing and appear to 

flex at the midfoot rather than at the talocrural joint when they do climb substrates angled 

>45˚. Talocrural flexion was 20˚ for the adult, and 22˚ for the infant. 

Figure 2.4. Vertically climbing in wild Papio ursinus (left), and Pan troglodytes (right).  

 
Figure 2.4. Comparative kinematics of vertical climbing in a cercopithecoid (Papio 
ursinus) on the left and a hominoid (Pan troglodytes) on the right, both in lateral view. 
Both primates were in the same stage of climbing with maximum dorsiflexion of the left 
ankle, push-off of the right foot, grasping of the substrate with the left hand and the 
beginning of a vertical reach with the right hand. Notice the difference in flexion at the 
left ankle between the chimpanzee and the baboon. Notice too the differences in flexion 
at the hip and knee.  
 

This climbing approach is also apparent from video data of chacma baboons 

(Papio ursinus). When ascending a small diameter tree, the baboons leap up alternatively 

angled branches. However, they will also engage in vertical climbing, though the primary 

amount of dorsiflexion is located at the midfoot rather than at the ankle (Figure 2.4). 

Talocrural flexion was estimated to be only 15˚. When ascending a large diameter tree, 
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the baboons practice a kinematically distinct approach. They splay their legs laterally and 

pull themselves up the tree in a pulse-like manner (Figure 2.5). Dorsiflexion at the ankle 

appears to be limited when this approach is utilized, though not possible to quantify with 

the methods employed in this study.  

Figure 2.5. Pulse vertical climbing in wild chacma baboon (Papio ursinus).  

 
Figure 2.5. Pulse climbing in a wild baboon (Papio ursinus) in the Moremi Game 
Reserve in the Okavango Delta in Botswana. There are 70 msec between each frame.  
 

Discussion 

 These are the first data reported on the kinematics of vertical climbing in wild 

chimpanzees. Observations from 63 vertical climbing bouts demonstrate that wild 

chimpanzees dorsiflex approximately 45˚ during their vertical ascent. This is an extreme 

range of motion, potentially unique to the non-human hominoids and some ateline 

primates among the anthropoids. The acute amount of dorsiflexion documented here may 

represent a specific adaptation to facilitate vertical climbing. 

A review of reported dorsiflexion achieved at the talocrural joint during walking 

in modern humans found angles ranging from 8.3˚ to 25.7˚ (Rome, 1996). This review 

reported that many factors can effect this measurement, including the instrument used, 

age of the subject, and the position of the calcaneus.  Siegler et al. (1988) attempted to 

decouple the contributions of the talocrural and subtalar joints to dorsiflexion and found 

that of the 25˚ of maximum dorsiflexion achieved in humans during walking, about 20˚ 

occurred at the talocrural joint. A similar result was obtained by Lundberg et al. (1989) 
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who found that 23˚ of the maximum 30˚ of dorsiflexion achieved by walking humans 

happens at the talocrural joint. Lundberg (1989) also found that because of the proximal 

attachment of the gastrocnemius to the distal femur, bending at the knee allows for a 

greater degree of dorsiflexion.  

 Although there is variation in the degree of dorsiflexion achieved during walking 

in humans, two studies have concurred that the human talocrural joint fails at 

approximately 45˚ of flexion (Begeman and Prasad, 1990; Parenteau et al., 1998). Sixteen 

lower limbs from cadavers could be dorsiflexed to about 20˚ before resistance from the 

Achilles tendon and the deltoid ligament became apparent (Begeman and Prasad, 1990). 

During impact to simulate a car accident, 11 of the 16 ankles dorsiflexed less than 45˚ 

and did not sustain injury while 5 of the 16 dorsiflexed greater than 45˚ and all sustained 

severe injury including rupture of the deltoid ligament and malleolar fractures (Begeman 

and Prasad, 1990). A study of thirty-two lower limbs of cadavers loading to failure found 

that the talocrural joint failed at an average of 44˚ ± 10.9˚ (Parenteau et al., 1998). The 

most common injuries included lateral malleolar fractures and failure of the 

calcaneofibular ligament (Parenteau et al., 1998). Though human newborns are capable 

of approximately 45˚ of dorsiflexion (Bernhardt, 1988), the adult ankle fails at that angle.  

 Like humans, cercopithecoid monkeys exhibit only moderate flexion at the 

talocrural joint during walking. For example, Vervet monkeys (Cercopithecus aethiops) 

were found to dorsiflex approximately 15˚ during quadrupedal walking (Vilensky and 

Gankiewicz, 1990). Apes have a greater range of dorsiflexion during walking than that 

measured in either humans or cercopithecoids. Bonobos (Pan paniscus) flex at the ankle 

an average of 37.4˚ during quadrupedal walking (D’Août et al., 2002). However, some of 
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this flexion is achieved at the midfoot and when foot flexion is taken into consideration, 

flexion at the talocrural joint alone ranges from 26˚-29˚. Many studies have reported foot 

dorsiflexion during bipedal walking in the apes. Chimpanzees (Pan troglodytes) dorsiflex 

at the ankle approximately 25˚ (Jenkins, 1972); orangutans (Pongo pygmaeus) flex up to 

40˚ during bipedal walking (Payne, 2001); gibbons dorsiflex about 20˚ during bipedalism 

(Yamazaki and Ishida, 1984). Because these apes do not walk bipedally very often in the 

wild, kinematic data on bipedally walking apes is useful in assessing joint capability, 

rather than what is commonly practiced.  

Few comparative data exist on the degree of dorsiflexion achieved by vertically 

climbing primates (Table 2.2). Hirasaki et al. (1993) reported that the ankle is flexed to a 

different degree in vertically climbing spider monkeys (Ateles geoffroyi) than that 

measured in macaques (Macaca fuscata). Spider monkeys dorsiflex an average of 32.7˚ 

during vertical climbing whereas macaques only dorsiflex 15.1˚-25.1˚ when they 

vertically climb in captivity (Hirasaki et al., 1993). These data on macaques are 

consistent with what was observed in this study on cercopithecoids. Preliminary data 

reported here suggest that during vertical climbing bouts in cercopithecoids, the majority 

of flexion occurs at the midfoot rather than at the talocrural joint (Figures 2.4 and 2.6). 

Like spider monkeys, gibbons have been found to experience a greater degree of 

dorsiflexion during vertical climbing than that found in cercopithecoids, achieving 

approximately 40˚ (Yamazaki and Ishida, 1984). This result of 40˚ is consistent with 

dorsiflexion achieved during vertical climbing in captive bonobos, lowland gorillas, and 

orangutans (Isler, personal communication), and parallels the results obtained in this 

study on wild chimpanzees and captive gorillas and orangutans. These data on the  
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Table 2.2. Maximimum degree of ankle dorsiflexion during vertical climbing in 
anthropoids. 
Species Wild/Captive N Dorsiflexion during 

vertical climbing 
Source 

Pan troglodytes Wild 63 45.5˚ ± 7.1˚ This study 
Gorilla gorilla 
gorilla 

Captive 8 50.6˚ ± 11.4˚ This study 

Pongo pygmaeus Captive 9 44.7˚ ± 8.5˚ This study 
Hylobates lar Captive - ~40˚ Yamazaki and 

Ishida, 1984 
Papio ursinus Wild 1 ~15˚ This study 
Theropithecus 
gelada 

Wild 2 ~21˚ ± 1.4˚ This study 

Allenopithecus 
nigroviridis 

Captive 1 ~25˚ This study 

Macaca fuscata Captive 30 15.1˚ ± 7.5˚; 16.5˚ ± 
7.6˚; 25.1˚ ± 9.4˚ 

Hirasaki et al., 
1993 

Ateles geoffroyi Captive 10 32.7˚ ± 4.6˚ Hirasaki et al., 
1993 

 
Figure 2.6. Comparative kinematics of climbing in the ankle of a hominoid (left) and 
cercopithecoid (right).  

 
Figure 2.6. Comparative kinematics of vertical climbing in the foot and ankle of a 
chimpanzee (left) and the cercopithecoid Allenopithecus (right). The ape on the left flexes 
approximately 45˚ at the ankle to bring itself closer to the vertical substrate.  
Alternatively, monkeys have reduced ankle dorsiflexion (~20˚) and compensate by 
flexing at the midfoot.  
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talocrural joint are consistent with other studies that have found kinematic convergence 

between apes and atelines during vertical climbing (Isler, 2003; Isler, 2004). 

Ascending a large body directly against the pull of gravity is energetically 

expensive (Preuschoft et al., 1992). In addition, because a fall from the heights achieved 

by climbing apes could be fatal (Goodall, 1986; Carter et al., 2008), adaptations are likely 

to evolve to ensure that apes efficiently navigate their arboreal environment (Cartmill, 

1985; Preuschoft et al., 1992; Pontzer and Wrangham, 2004). One of these adaptations 

may be extreme flexion at the talocrural joint. As discussed in the introduction, during 

vertical climbing, there is a force produced by the pull of gravity that is proportional to 

the mass of the animal and the distance that the animal is from the tree. A climbing ape 

cannot change its own mass during climbing, and thus adaptations that allow the animal 

to be closer to the vertical substrate will reduce the downward force acting on the animal 

and the costs of climbing. Keeping the body close to the substrate in order to reduce the 

forces on the climbing animal is a vertical climbing adaptation that has been noted 

elsewhere (Preuschoft, 1970; Preuschoft et al., 1972; Cartmill, 1972; Cartmill, 1985; 

Autumn et al., 2006). It has been suggested that the abducted, short lower limb of the 

great apes helps reduce the climbing moment by pulling them closer to the tree. Here, I 

suggest that extreme dorsiflexion at the talocrural joint is an additional adaptation that 

reduces climbing costs.  

Interestingly, the Ngogo chimpanzees climbed trees of a limited diameter 

compared to the large range of trees found in the Kibale National Park (Figure 2.7). A 

survey of 578 trees from 20 species found that the Ngogo study area consists of trees with 

an average diameter of 108.64 cm ± 84.7 cm, ranging from a minimum of 8.2 cm  
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Figure 2.7. Size of trees climbed by chimpanzees compared to the size of trees available 
to climb in Kibale National Park.   

 
Figure 2.7. Chimpanzees climb a very specific range of tree diameters of 13.9 cm ± 7.7 
cm. A histogram of the frequency of tree diameters climbed by chimpanzees are 
illustrated by the blue circles. These data are compared to the size of trees actually in the 
Kibale Forest, the frequency of which are illustrated by the green stars. Almost 80% of 
chimpanzee climbs are on trees with a diameter at breast height of 10-25 cm. 
Chimpanzees may favor trees with a diameter small enough to fully grasp with the 
divergent hallux and lateral digits of their feet. Data provided by Jeremiah Lwanga and 
John Mitani.  
 

(Uvariopsis congensis) to 680 cm (Ficus mucuso) (Lwanga, personal communication). 

The average tree diameter of the 166 trees vertically climbed by chimpanzees was 13.9 
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cm ± 7.7 cm. Thus, chimpanzees preferentially climb trees with smaller diameters than 

the majority of trees available to them (two sample Kolmogorov-Smirnov test, z = 7.293, 

p<0.0001). Climbing these trees may allow the chimpanzee to obtain a prehensile grip 

around the substrate and maximize the vertical force produced by the foot. Larger 

diameter trees may prohibit a prehensile grip, and thus would be more difficult, and more 

dangerous, to climb. This hypothesis is consistent with data on wild lowland gorillas 

which have a larger span between the abducted hallux and the lateral four digits and 

climb larger trees that are between 48.5 cm and 66 cm (Remis, 1999).  

However, the results obtained in this study also suggest that wild chimpanzees are 

capable of climbing more variable vertical substrates than has been previously reported. 

Chimpanzees at the Gombe Stream and Mahale Mountains National Parks climb trees 

that have a diameter of 2-10 cm 85% of the time (Hunt, 1992). In this study, the 

chimpanzees of the Ngogo community climbed trees 2-10 cm in diameter only 9% of the 

time. The choice of climbing specific diameter trees may be season and forest dependent.  

 Evidence presented here suggests that there may be two distinct kinematic 

strategies in the foot and ankle during vertical climbing bouts in anthropoid primates. The 

first, practiced by cercopithecoids, maintains a less flexed talocrural joint while flexing 

the midfoot to pull the monkey close to the tree. The second, practiced by Ateles 

(Hirasaki et al., 1993) and apes (Yamazaki and Ishida, 1984; Isler, pers. comm., this 

study), involves flexion at the talocrural joint to pull the animal’s body close to the 

vertical substrate. These different models of climbing result in specific predictions for 

how the ankle and foot anatomy of cercopithecoids, apes and atelines should differ. 
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These predictions are detailed in the following chapters (Chapters 3-5), and thus will be 

only briefly discussed here.  

 Dorsiflexion in humans is restricted by the Achilles tendon (Costa et al., 2006), 

and by the posterior fibers of the deltoid ligament (Rasmussen et al., 1983; Siegler et al., 

1988). The absence of a prominent Achilles tendon in chimpanzees is a likely source of 

the extremes of dorsiflexion achieved by vertically climbing chimpanzees. Likewise, one 

might posit a smaller or weaker posterior tibiotalar ligament in vertically climbing apes. 

The distal tibia of humans and Old World monkeys, in contrast, are predicted to have a 

large area of attachment for the posterior tibiotalar ligament, which would restrict 

extreme dorsiflexion at the talocrural joint (Chapter 5).  

Loading the talocrural joint in a position of dorsiflexion, inversion and abduction 

yields specific predictions regarding skeletal adaptations of that joint. Human cadaver 

studies have demonstrated that loading of the talocrural joint during dorsiflexion shifts 

the load anteriorly (Corazza et al., 2005), while loading of the joint during foot inversion 

shifts the load medially (Calhoun et al., 1994). Thus, it is hypothesized that skeletal 

correlates of ape-like vertical climbing would include an expansion of the anterior surface 

of the distal tibia and talus, and an enlarged medial malleolus of the distal tibia.  

This study suggests that the range of motion and loading environment of the 

talocrural joint during vertical climbing differs substantially between apes and 

cercopithecoids. A comparative study of this joint may therefore yield important skeletal 

and ligamentous information regarding adaptations for vertical climbing. Functionally 

significant skeletal correlates of talocrural dorsiflexion, if supported by further study, will 

help interpret the locomotor capacity of Miocene catarrhines and Plio-Pleistocene 
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hominins, and help test whether any of these early apes or early hominins were adapted to 

vertically climb like a modern chimpanzee.  

 

Conclusion  

 These are the first kinematic data on vertical climbing in wild chimpanzees. These 

data demonstrate that chimpanzees pull themselves close to the vertical substrate during 

vertical climbing in part via extreme dorsiflexion at the talocrural joint. This magnitude 

of dorsifleixion, 45˚, is not possible in the human ankle without severe injury. Limited 

data on vertical climbing in wild and captive cercopithecoids, in contrast, suggest that 

they pull themselves close to the substrate by flexing the midfoot, rather than dorsiflexing 

the ankle. These data support the hypothesis that apes and cercopithecoids vertically 

climb in a kinematically distinct manner. Skeletal correlates of vertical climbing in the 

talocrural joint may provide insight into locomotor repertoire of Miocene catarrhines and 

early hominins.   
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CHAPTER 3 
 

Vertical climbing adaptations in the anthropoid talocrural joint: Implications for 
early Miocene catarrhine locomotion. 

 

Abstract 

 Extant apes and ateline primates vertically climb more often than cercopithecoid 

monkeys, and in a kinematically different manner. At the ankle joint, apes and atelines 

use extreme dorsiflexion, combined with foot inversion and abduction, to keep their 

bodies close to the substrate while vertically climbing, whereas cercopithecoids flex 

primarily at the midfoot. Thus, the ankle of vertical climbing apes and atelines is 

hypothesized to be well-adapted to a unique loading environment able to withstand the 

forces incurred during extremes of dorsiflexion, inversion, and abduction. Linear and 

angular measurements were taken on 379 tibiae and 224 tali of wild-collected adult 

anthropoid primates from the genera Pan, Gorilla, Pongo, Hylobates, Symphalangus, 

Papio, Mandrillus, Macaca, Theropithecus, Nasalis, Cebus, Ateles, Alouatta and 

Lagothrix. Skeletal correlates of vertical climbing in ape and ateline ankles include an 

expansion of the anterior aspect of the tibia, a thickened medial malleolus of the tibia, 

and a mediolaterally expanded tibial metaphysis. A study of 10 tibia and 26 tali from 

Miocene deposits in Kenya and Uganda finds little evidence for vertical climbing 

adaptations in the ankles of Miocene catarrhines, including the earliest hominoids. 

Instead, most specimens are cercopithecoid-like, or have no modern analogue. There is, 

however, evidence from the tali of Rangwapithecus and Simiolus that they may have 
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engaged in extremes of dorsiflexion at the ankle and loaded the medial side of the foot 

during climbing bouts. Additionally, the Proconsul major distal tibia from Napak, 

Uganda is not simply a scaled up version of smaller Proconsul tibiae, but rather has a 

distinct morphology suggestive of some vertical climbing in this large bodied hominoid. 

These data suggest that there may have been more locomotor diversity in the early 

Miocene than has been proposed.  

 

Introduction 

The ankle, or talocrural joint, is formed between the tibia, fibula, and talus. 

Though often characterized as a simple hinge joint because motion is primarily restricted 

to dorsiflexion and plantarflexion, subtle morphological differences among primate 

species in the shape of the talus and distal tibial facet can result in abduction/adduction 

and inversion/eversion at the talocrural joint as well. Attempts have been made by many 

workers to link these skeletal differences to locomotor constraints in extant primates in 

order to interpret the functional morphology of fossil anthropoid ankle bones (Conroy, 

1976; Fleagle, 1977; Harrison, 1982; Conroy and Rose, 1983; Fleagle and Simons, 1983; 

Dagosto, 1985; Langdon, 1986; Gebo and Simons, 1987; Dagosto, 1988; Fleagle and 

Meldrum, 1988; Ford, 1988; Strasser, 1988; Harrison, 1989; Seiffert and Simons, 2001). 

Though skeletal correlates of leaping, arboreal quadrupedalism, and terrestrial 

quadrupedalism at the talocrural joint have all been investigated, ankle morphology 

adapted for vertical climbing has not yet been systematically assessed in the anthropoid 

ankle. Predictions of skeletal correlates of vertical climbing in the talocrural joint are 

derived from kinematic analysis of ankle during vertical climbing bouts in wild and 
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captive apes (Chapter 2). This study tests whether the talocrural joint differs among apes, 

cercopithecoids, and atelines in ways functionally related to joint mobility and loading in 

positions of dorsiflexion, abduction, and inversion known to be important during vertical 

climbing. 

The vast majority of primates share unique features of the ankle functionally 

related to hallucial grasping and arboreality (Lewis, 1980; Dagosto, 1985; Gebo, 1993). 

These features include an unfused, mobile fibula important for hallucial grasping while 

moving along uneven arboreal substrates (Barnett and Napier, 1953; Fleagle and Simons, 

1983), and evidence for a prominent flexor hallucis longus (Conroy and Rose, 1983; 

Gebo et al., 2000). In addition, while most mammals have a prolonged medial aspect of 

the talocrural joint, primates have an elongated lateral aspect, which puts the foot in a 

position of abduction during dorsiflexion (Dagosto, 1985; Strasser, 1988; Gebo, 1993). 

This morphology has been described as a primate synapomorphy (Dagosto, 1985), and 

functionally linked to arboreality (Gebo, 1993).  

Within this general morphological framework, variation in the morphology of the 

distal tibia, fibula, and talus has been functionally linked to primate leaping, and arboreal 

and terrestrial quadrupedalism. Both leaping primates and quadrupedal cercopithecoids 

possess a deeply concave talar surface and corresponding keel on the distal tibia (Gebo 

and Simons, 1987) which stabilizes the joint in the parasagittal plane (Harrison, 1989). 

This morphology is a primitive feature of the mammalian ankle (Dagosto, 1985). 

However, there are important functional differences in the ankle between leaping and 

generalized quadrupedal primates. In comparing sympatric leaf monkeys in Malaysia, 

Fleagle (1977) found that the leaper Presbytis melalophos possessed a talar trochlea with 
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an equal height to the lateral and medial rims. This is in contrast to the arboreal 

quadruped Presbytis obscura which has a higher lateral rim. This asymmetry between the 

lateral and medial heights of the talar rims is common in all cercopithecoids (Harrison, 

1982; Strasser, 1988; Gebo, 1993) and has been argued to be an adaptation for foot 

stabilization during walking and running (Langdon, 1986), because talar asymmetry 

would limit foot abduction thus keeping the foot stable in a parasagittal plane (Gebo, 

1993). Dagosto (1988) has also proposed that the high trochlear rims in primate tali 

prevent inversion at the talocrural joint, shifting that motion to the subtalar and transverse 

tarsal joints.  

Differences between leapers and arboreal quadrupeds have also been studied in 

the platyrrhine ankle (Fleagle and Meldrum, 1988). Compared with the arboreal 

quadruped Chiroptes, the leaping New World Monkey Pithecia has an anteroposteriorly 

narrow distal tibia, and an extension of the facet for the distal tibia onto the neck of the 

talus, morphologies both consistent with extreme dorsiflexion.  In addition, Pithecia 

possesses strong ligamentous connections between the distal tibia and fibula, and a 

relatively thin, laterally flat medial malleolus consistent with the reduced role of hallucial 

grasping and motion limited to dorsiflexion and plantarflexion. 

Fewer attempts have been made to interpret differences in ankle morphology 

among cercopithecoids and non-human hominoids and the results have been conflicting. 

For example, the cotylar fossa, a small facet on the medial aspect of the talus for the 

medial malleolus has been characterized in the following three ways: Deeply cupped in 

cercopithecoids but shallow in platyrrhines and apes (Le Gros Clark and Leakey, 1951; 

Harrison, 1982), cupped in both cercopithecoids and apes (Dagosto, 1985), cupped in 
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cercopithecoids and gibbons but not great apes (Fleagle, 1983; Rose, 1994). Furthermore, 

the function of this morphology is not clear. It has been suggested to be an adaptation for 

climbing (Gebo and Simons, 1987), an adaptation for joint stability during dorsiflexion 

not related to arboreality at all (Lewis, 1980; Harrison, 1982), or a variable feature not 

functionally informative (Ford, 1988). These differing interpretations are in part the result 

of qualitative assessments of a highly variable feature that may have no functional 

significance. 

Another uncertain morphological feature perhaps more relevant to the issue of 

vertical climbing is the presence of a wedge-shaped talar trochlea and corresponding 

mediolateral expansion of the anterior aspect of the distal tibia relative to the posterior 

rim. Conroy (1976) found little variation in talar wedging among primates; Langdon 

(1986) argued that the African ape and ateline talus is more strongly wedged than the tali 

of cercopithecoids or Asian apes; Harrison (1982) suggested that this morphology 

discriminated apes and cercopithecoids. In addition to different patterns of talar wedging, 

there are different functional interpretations. A wedged talus has been argued to provide 

stability for the talocrural joint during dorsiflexion (Gomberg, 1981; Rose, 1983; 

Langdon, 1986) and correspondingly permits greater abduction and adduction in 

plantarflexion (Rose, 1993).  However, in humans, who have a moderately wedged talus, 

there is no evidence for greater talocrural laxity in plantarflexion than in dorsiflexion 

(Barnett and Napier, 1952; Close, 1956; Inman, 1976; Morris, 1977; Bremer, 1985; 

Pereira et al., 1996) and thus there are problems with the interpretation that wedging 

promotes mobility in plantarflexion and stability in dorsiflexion, as others have noted 

(Conroy, 1976). While some have suggested that the function of talar wedging is unclear 
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(McCrossin, 1994), others have argued that wedging is a by-product of the conical nature 

of the primate talus (Inman, 1976).  

Many have observed that relative to cercopithecoids, apes possess a more robust 

medial malleolus (Harrison, 1982; Harrison, 1989), and a more mediolaterally broad 

distal tibia (Harrison, 1989; Rose, 1993; McCrossin, 1994). In addition, it has been noted 

that some features of the ape tarsal region can also be found in New World atelines, and 

may be functionally related to climbing (Gebo, 1989). However, the functional 

significance of the hominoid talocrural joint has yet to be systematically explored. Many 

of the comparative studies that have been attempted on the primate ankle have involved 

multivariate canonical analyses that provide few functional insights (Day and Wood, 

1969; Oxnard, 1972; Wood, 1973; Lisowski et al., 1976). 

Prior research on the primate ankle has been combined with studies on the rest of 

the postcranial skeleton to interpret the functional anatomy of early Miocene catarrhines. 

The locomotion of these early catarrhines is an area of great interest to 

paleoanthropologists in part because extant hominoids and cercopithecoids move in such 

different ways and possess unique postcranial anatomies (Harrison, 1987; Pilbeam and 

Pilbeam, 1996; Young, 2003; MacLatchy, 2004). Understanding how Miocene 

catarrhines moved will help establish the pattern of locomotor evolution in both the 

hominoid and cercopithecoid clades, and perhaps reveal the role that locomotion may 

have played in the divergence of hominoids and cercopithecoids from the last common 

catarrhine ancestor. Despite the evidence for taxonomic diversity in the early Miocene, 

there is little evidence for locomotor diversity (Fleagle, 1999). Instead, many of the early 

Miocene taxa have been reconstructed as generalized arboreal quadrupeds (Rose, 1993; 
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Rose, 1994). The best known Miocene hominoid Proconsul is reconstructed as an above 

branch, perhaps slow-moving, pronograde quadruped (Walker and Pickford, 1983; Rose, 

1983; Rose, 1993; Rose, 1994; Walker, 1997). Similar locomotion has been reconstructed 

for Afropithecus, and Limnopithecus (Rose, 1993; Fleagle, 1999). There is some evidence 

that Turkanapithecus may have been capable of more forelimb suspension than 

Proconsul (Rose, 1993), and the small-bodied Dendropithecus and Simiolus are also 

reconstructed as possessing more suspensory abilities than Proconsul (Rose, 1992; Rose, 

1993). In addition, the 20.6 million year old ape Morotopithecus is reconstructed as an 

orthograde, suspensory animal with adaptations for vertical climbing (Sanders and 

Bodenbender, 1994; Gebo et al., 1997; MacLatchy et al., 2000; MacLatchy, 2004). While 

the elongated forelimbs and long pedal digits of the 14-15 million year old KNM-BG 

35250 Nacholapithecus skeleton suggest that this ape was capable of more orthogrady 

and vertical climbing than Proconsul (Rose, 1996; Ishida et al., 2004), the scapula and 

clavicle are more indicative of colobine-like locomotion in an arboreal habitat (Senut et 

al., 2004). Moreover, the long, Proconsul-like lumbar region of KNM-BG 35250 (Ishida 

et al., 2004), suggests that Nacholapithecus was not as well adapted to frequent 

orthograde postures as extant apes. The 15 million year-old hominoid Kenyapithecus is 

also a generalized quadruped that may have been more terrestrial than these other 

Miocene taxa (McCrossin and Benefit, 1997).  

Few studies have commented on the locomotion of two Miocene apes, Proconsul 

major and Rangwapithecus gordoni. The distal tibia of P. major has been described as 

morphologically similar to other Proconsul tibiae (Rafferty et al., 1995). However, some 

have suggested greater climbing capacity in this species of Proconsul than the others 
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based on the morphology of a fragmentary ulna (Nengo and Rae, 1992), the morphology 

of the calcaneocuboid joint (Gebo, 1989), and femora (Gommery et al., 1988; Gommery 

et al., 2002). In addition, the medial cuneiforms potentially of Rangwapithecus from the 

Miocene site of Songhor appear to possess a morphology adapted for arboreal climbing 

(Nengo and Rae, 1992). The talus BMNH 26903, perhaps attributable to 

Rangwapithecus, clusters with hominoids in a multivariate study, though no functional 

inferences were made (Seiffert and Simons, 2001). The functional morphology of these 

two apes has not been reconstructed primarily because of a lack of postcranial material 

that can be definitively assigned to them.  

 Interpretations of the hominoid fossil record, both behaviorally and 

phylogenetically, are contingent on the identification of skeletal correlates of locomotor 

behaviors currently practiced by the living apes. These include orthograde postures, 

suspensory behaviors, quadramanous climbing, and vertical climbing. Studies on modern 

ape locomotion have hypothesized the importance and potential uniqueness of each of 

these forms of locomotion. Based on data from wild siamangs (Symphalangus 

syndactylus), Fleagle (1976) suggested that apes are quadramanous climbers. More 

recently, observations of wild chimpanzees at Mahale and Gombe made by Hunt (1991) 

suggested that the key hominoid locomotor adaptation was arm-hanging postures and 

suspensory locomotion. In contrast, Thorpe and Crompton (2006) found that wild 

orangutans use arm-hanging postures and suspensory locomotion less often than 

previously thought, and suggested instead that general orthogrady, rather than strict arm-

hanging, was an ape synapomorphy. Building on the suggestion by Doran (1996) that 

general climbing differentiated the apes from other anthropoids, Isler and Thorpe (2003) 
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and Isler (2003) have argued that an increased frequency of vertical climbing and the 

unique kinematics of climbing performed by hominoids unites this group to the exclusion 

of the cercopithecoids.  

This study focuses specifically on vertical climbing. Although apes vertically 

climb more frequently than cercopithecoid monkeys (Chapter 2), some have argued that 

they do so in a kinematically identical manner (Hunt, 1989; Hunt, 1992). This hypothesis 

has been disputed by observations made of captive and semi-wild primates (Isler, 2003; 

Isler, 2005). Interestingly, ateline primates Ateles and Lagothrix have converged with 

apes and not only vertically climb as frequently as extant apes, but in a kinematically 

similar manner (Hirasaki et al., 1993; Isler, 2003; Isler, 2004). As reported in Chapter 2, 

one of the kinematically unique approaches taken by vertically climbing apes and atelines 

involves extreme dorsiflexion at the ankle. Extreme dorsiflexion may not be an approach 

used by cercopithecoid monkeys in the rare occasions that they ascend a vertical 

substrate. Instead, cercopithecoid monkeys may flex primarily at the midfoot region 

(Chapter 2). Inversion and adduction are also important motions during vertical climbing, 

though it is not clear if apes and atelines have a greater range of these motions than 

cercopithecoids during vertical climbing bouts. All three motions- dorsiflexion, inversion 

and adduction- at the ankle help bring the vertically climbing ape or ateline closer to the 

vertical substrate, thus reducing torque at the hip, knee, and ankle produced by the weight 

of the climbing primate acting at a distance from the tree. Thus, data from wild and 

captive studies are strongly suggestive that during vertical climbing bouts, apes and 

atelines load their ankles in a different manner than cercopithecoid monkeys do.  
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If apes and atelines vertically climb more often than do cercopithecoids and  do so 

by loading their ankles differently than cercopithecoids, then I predict that the skeletal 

morphology of the distal tibia and talus of apes and atelines will differ from 

cercopithecoids in ways that are functionally related to an increased range of 

dorsiflexion, inversion, and adduction. In addition, I hypothesize that the ankles of apes 

and atelines will be well adapted to withstand forces incurred on a joint loaded in these 

foot positions. Specific skeletal predictions are outlined in detail below and in the 

materials and methods section.  

Studies of human cadavers have found that during dorsiflexion, the contact point 

between the tibia and the talus shifts anteriorly (Driscoll et al., 1994; Corazza et al., 

2005). Vertically climbing primates experience extremes of foot dorsiflexion during 

climbing bouts, and therefore it is hypothesized that they will produce a loading 

environment at the talocrural joint with high anterior forces. Because stress is equal to 

force divided by a given surface area, increased bone in the anterior aspect of the 

talocrural joint would help reduce the stress in this region despite the high forces being 

incurred. Thus, it is predicted that vertically climbing apes and atelines will have 

relatively broader anterior aspects of the distal tibia and talus than the cercopithecoids.  

Inversion at the talocrural joint in the human ankle shifts the contact point 

medially on the articular surface and onto the medial malleolus (Calhoun et al., 1994; 

Kura et al., 1998). In addition, detailed kinetic work on the primate foot has shown that 

the force on the foot shifts medially when chimpanzees climb a vertical pole; however, 

the force remains in a lateral position in pole climbing cercopithecoids (Wunderlich, 

1999). It is therefore hypothesized that vertically climbing apes and perhaps atelines will 
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produce a loading environment at the talocrural joint with high medial forces. Again, 

because stress is equal to force divided by a given surface area, increased size of the 

medial aspect of the talocrural joint would help reduce the stress in this region despite the 

high forces being incurred. Thus, it is predicted that vertically climbing primates will 

have more robust medial malleoli and a flattened medial side to the talus.  

Because vertical climbing has been hypothesized to be a unique non-human 

hominoid locomotion (Isler and Thorpe, 2003; Isler, 2003), the identification of vertical 

climbing adaptations in the postcranial bones of early Miocene catarrhines has important 

ramifications for hypotheses of hominoid evolution and catarrhine phylogenetics. This 

study applies behavioral data of vertical climbing frequency of wild primates with 

kinematic data on the talocrural joint in primates to make specific predictions about how 

the talocrural joint should differ between vertically climbing apes and atelines, and the 

cercopithecoid primates.  

I hypothesize that the ankle joint will differ in vertically climbing apes and 

atelines from cercopithecoid primates in ways that are functionally related to extreme 

dorsiflexion, inversion, and abduction. Data are collected on specific morphologies of the 

ankle that have been hypothesized to be adaptive based on the biomechanics of vertical 

climbing described above. Two-dimensional linear and angular measurements are taken 

on the distal tibiae and tali of 14 different genera of anthropoid primates. These 

measurements quantify the geometry of the articular surface of the distal tibia, the 

robustness of the medial malleolus, and the range of abduction possible at the talocrural 

joint. Specific measurements and their functional rationale are detailed in the material 

and methods section. Results are then applied to the early hominoid fossil record to 
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examine whether any Miocene hominoids or generalized catarrhines had an ankle 

morphology adapted for frequent vertical climbing in the same kinematic way that 

modern apes and atelines do.  

 

Materials and methods 

The right distal tibia and talus of adult wild-shot primates were studied at the 

Cleveland Museum of Natural History, Harvard Museum of Comparative Zoology, 

American Museum of Natural History (New York), National Museum of Natural History 

(Washington D.C.), Yale Peabody Museum, and Field Museum (Chicago). Primate taxa 

studied include: African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla gorilla, 

Gorilla gorilla beringei), Asian apes (Pongo pygmaeus, Hylobates lar, Symphalangus 

syndactylus), atelines (Ateles spp., Alouatta palliata, Lagothrix lagotricha, Brachyteles 

arachnoides), Cebus capucinus, and the cercopithecoids (Nasalis larvatus, Macaca 

fascicularis, Macaca nemestrina, Mandrillus sphinx, Theropithecus gelada, and Papio 

spp.). The numbers of tibia and tali, and the sexes of the specimens are listed in Tables 

3.1 and 3.2. Based on data from the literature (Rose, 1977; Fleagle, 1999; Ankel-

Simmons, 2000), cercopithecoids were grouped into a terrestrial category composed of 

Papio, Mandrillus, Theropithecus, and Macaca nemestrina, and a more arboreal 

cercopithecoid category composed of Nasalis and Macaca fascicularis.  

Fossil tibia and tali from the Miocene (Tables 3.3 and 3.4) were studied at the 

Kenya National Museum in Nairobi, and the Uganda National Museum in Kampala. High 

quality research casts of the tibia KNM-MV 2 and tali BMNH M26309, RUD 27, and 

GSP 10875 were provided by the Harvard Peabody Museum. All linear measurements on 
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Table 3.1. Extant anthropoid tibiae measured in this study. 
Family Species Male Female Sex 

unknown 
Total 

Hominoid Pan 
troglodytes 

18 20 10 48 

 Pan paniscus 2 1 1 4 
 Gorilla 

gorilla gorilla 
23 19 2 44 

 Gorilla 
gorilla 
beringei 

15 6 1 22 

 Pongo 
pygmaeus 

12 19 5 36 

 Hylobates lar 19 20 1 40 
 Symphalangus 

syndactylus 
2 5 1 8 

Cercopithecoid Papio spp. 18 5 12 35 
 Mandrillus 

sphinx 
3 4 3 10 

 Theropithecus 
gelada 

3 2 0 5 

 Macaca 
fascicularis 

3 2 0 5 

 Macaca 
nemestrina 

4 2 0 6 

 Nasalis 
larvatus 

18 19 0 37 

Platyrrhine Alouatta 
palliata 

11 7 2 20 

 Ateles spp. 12 8 3 23 
 Brachyteles 

arachnoides 
0 0 1 1 

 Lagothrix 
lagotricha 

8 5 3 16 

 Cebus 
capucinus 

10 9 0 19 
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Table 3.2. Extant anthropoid tali measured in this study. 
Family Species Male Female Sex 

unknown 
Total 

Hominoid Pan 
troglodytes 

19 22 10 51 

 Pan paniscus 2 1 1 4 
 Gorilla 

gorilla gorilla 
23 19 3 45 

 Gorilla 
gorilla 
beringei 

10 3 0 13 

 Pongo 
pygmaeus 

12 18 7 37 

 Hylobates lar 17 17 2 36 
 Symphalangus 

syndactylus 
4 3 1 8 

Cercopithecoid Papio spp. 13 3 8 24 
 Mandrillus 

sphinx 
2 2 3 7 

 Theropithecus 
gelada 

2 1 0 3 

 Macaca 
fascicularis 

2 1 0 3 

 Macaca 
nemestrina 

0 1 0 1 

 Nasalis 
larvatus 

15 8 12 35 

Platyrrhine Alouatta 
palliata 

0 0 2 2 

 Ateles spp. 8 7 1 16 
 Lagothrix 

lagotricha 
7 3 0 10 

 Cebus 
capucinus 

5 3 0 8 

 
fossil and extant tibiae and tali were made with digital calipers. Significance was assessed 

for all measures in this study using a Tukey honestly significantly different (HSD) post 

hoc test after first performing a one-way analysis of variance (ANOVA test). The Tukey 

test was chosen over a Fisher’s least significant difference (LSD) for planned comparison 

test even though planned comparisons were hypothesized a priori because in cases where 

more than three pairs of comparisons are made, the HSD test decreases the probability of 
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committing Type I errors more than the LSD test (Day and Quinn, 1989). Furthermore, 

although the focus of the study was limited to vertical climbing adaptations, other 

differences in morphology between different primate groups is of post hoc interest 

because these primates engage in other locomotor activities than vertical climbing.  

Table 3.3. Fossil catarrhine tibiae measured in this study. 
Accession 
number 

Geological 
age 

Family Taxon Body mass 
estimate (kg)* 

NAP I’58 19.51,2 Hominoid Proconsul 
major3,5 

77.5  

BUMP 99 19.51,2 Catarrhine ? 6.3 
BUMP 764 19.51,2 Catarrhine ? 2.6 
KNM-LG 583 19.54 Hominoid? 

Catarrhine? 
?P. africanus5 

?Dendropithecus 
macinnesi3 

7.6 

KNM-MV 2 19.54 Catarrhine Micropithecus 
clarki5 

8.0 

KNM-ER 1939 17.86 Hominoid P. nyanzae3, 7 29.4 
KNM-RU 3589 17.86 Hominoid P. heseloni3 9.0 
KNM-RU 2036 17.86 Hominoid P. heseloni3 11.1 
KNM-BG 
35250 

~158 Hominoid Nacholapithecus 
kerioi9 

9.7 (distorted) 

KNM-MB 
11973 

14-1510 Cercopithecoid Victoriapithecus 
macinnesi11 

2.1 

KNM-ER 
40443 

1.9-2.112, 13 Cercopithecoid Theropithecus 
oswaldi13 

38.5  

KNM-ER 3823 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 21.8  
KNM-WT 
16875 

1.4-2.113 Cercopithecoid T. oswaldi 13 29.4  

KNM-WT 
16755 

1.4-2.113 Cercopithecoid T. oswaldi 13 15.0  

KNM-ER 3877 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 23.4  
KNM-ER 5474 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 31.8  
KNM-ER 597 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 27.1  
KNM-ER 866 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 57.9  
KNM-ER 5491 1.9-2.112, 13 Cercopithecoid T. oswaldi 13 38.5  
KNM-OG 1109 >0.7413 Cercopithecoid T. oswaldi 13 27.6  
1Bishop, 1969; 2MacLatchy et al., 2006; 3Rafferty et al., 1995; 4Pickford and Andrews, 
1981; 5Harrison, 1982; 6Drake et al., 1988; 7Le Gros Clark, 1952; 8Sawada et al., 1998; 
9Ishida et al., 1999; 10Feibel and Brown, 1991; 11Harrison, 1989; 12Feibel et al., 1989; 

13Krentz, 1993. 
 
*Body mass estimates based on equations provided in Rafferty et al., 1995.  
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Table 3.4. Fossil catarrhine tali measured in this study 
Accession 
number 

Geological 
age 

Family Taxon Body mass 
estimate* 

KNM-SO 389 19.53 Hominoid Proconsul 
major1,2,4,5 

49.4 

KNM-SO 1402 19.53 Catarrhine Rangwapithecus 
gordoni?5 

12.5 

KNM-SO 1705 19.53 Catarrhine P. africanus5 16.6 
KNM-SO 966 19.53 Catarrhine R. gordoni4,5 12.5 
KNM-SO 968 19.53 Catarrhine R. gordoni4,5 9.5 
KNM-CA 1305 19.53 Catarrhine Micropithecus 

clarki4 

Dendropithecus 
macinnesi5 

6.1 

KNM-SO 967 19.53 Catarrhine M. clarki4,5 5.6 
KNM-SO 392 19.53 Catarrhine Limnopithecus 

evansi4 

M. clarki5 

3.0 

KNM-LG 621 19.53 Catarrhine Limnopithecus 
legetet4,5 

D. macinnesi?5 

5.1 

KNM-SO 478 19.53 Catarrhine M. clarki4,5 6.5 
BMNH 
M26309 

19.53 Catarrhine R. gordoni4,5 7.1 

KNM-RU 1743 17.86 Hominoid P. nyanzae4,5 41.5 
KNM-RU 1744 17.86 Hominoid P. heseloni4,5 7.9 
KNM-RU 1745 17.86 Hominoid P. heseloni4,5 10.0 
KNM-RU 1748 17.86 Catarrhine D. macinnesi? 4,5 7.3 
KNM-RU 1896 17.86 Hominoid P. nyanzae2, 4, 5, 7 37.9 
KNM-RU 2036 17.86 Hominoid P. heseloni5,21 10.2 
KNM-RU 3105 17.86 Hominoid P. nyanzae5 20.7 
KNM-RU 5940 17.86 Hominoid P. nyanzae 36.2 
KNM-RU 5872 17.86 Hominoid P. nyanzae5 ~40 kg (Walker 

and Pickford, 
1983) 

KNM-RU 5945 17.86 Catarrhine Nyanzapithecus 
vancouveringi? 
D. macinnesi? 

10.8 

KNM-RU 1663 17.86 Catarrhine D. macinnesi?4,5 7.5 
KNM-WK 
18120 

16-188 Hominoid Afropithecus 
turkanensis8,9 

25.4 

KNM-WK 
17171 

16-1810 Catarrhine Simiolus 
enjiessi10,11 

4.3 

KNM-BG 
35250 

1512 Hominoid Nacholapithecus 
kerioi13 

22.8 
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KNM-MB 
9422 

14-1514 Cercopithecoid Victoriapithecus 
macinnesi15 

4.0 

RUD 27 ~10.017 Hominoid Dryopithecus 
brancoi? 16 

Anapithecus 
hernyaki? 17 

17.0  

GSP 10785 ~8.018 Hominoid Sivapithecus 
indicus18 

10.8 

KNM-ER 745 1.4-1.619, 20 Cercopithecoid Theropithecus 
oswaldi 

44.7  

BK II/OLD 
1957/1050 

1.15-1.719, 20 Cercopithecoid T. oswaldi 50.8 

 
1MacInnes, 1943; 2Pilbeam, 1969; 3Pickford and Andrews, 1981; 4Harrison, 1982; 
5Langdon, 1986; 6Drake et al., 1988; 7Le Gros Clark, 1952; 8Leakey and Leakey, 1986; 
9Leakey et al., 1988; 10Leakey and Leakey, 1987; 11Rose et al., 1992; 12Sawada et al., 
1998; 13Ishida et al., 1999; 14Feibel and Brown, 1991; 15Harrison, 1989; 16Morbeck, 1983; 
17Kordos and Begun, 2001; 18Pilbeam et al., 1980; 19Feibel et al., 1989; 20Krentz, 1993; 
21Walker et al., 1993 
 
Note: Specimens referred to as P. africanus at Kisingire sites (Harrison, 1982; Langdon, 
1986) were later reassigned to P. heseloni (Walker et al., 1993) and are assigned as such. 
P. africanus talus only at Songhor.  
*Body mass estimates based on equations provided in Rafferty et al., 1995.  
  

All ankle morphology of extant anthropoids was quantified to assess features 

related to the three types of movement that typified vertically climbing wild chimpanzees 

(Chapter 2): dorsiflexion, abduction, and inversion.  

 

Dorsiflexion 

 Four separate analyses were undertaken on the tibia and talus to assess both the 

capacity for extreme dorsiflexion, and to test whether loading occurs in the joint during 

periods of extreme dorsiflexion.  

 DISTAL TIBIA 

1.) Six measures were taken on the articular surface of the distal tibia: the 

maximum mediolateral length of the anterior aspect of the articular surface, the 
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maximum mediolateral length of the posterior aspect of the articular surface, the 

maximum mediolateral length at the midpoint of the articular surface, the maximum 

anteroposterior width of the most medial aspect of the articular surface, the maximum 

anterioposterior width of the most lateral aspect of the articular surface, and the 

maximum anteroposterior width at the midpoint of the articular surface (Figure 3.1). 

Measurement error, assessed by repeating these measures on forty specimens a month 

after the original measurements were taken, was within 5%. The geometric mean of these 

six measures was calculated by taking the product of all six and then the (1/6)th root of 

the product. Each raw measure was then divided by the geometric mean, following the 

size adjustment protocol established by Darroch and Mosimann (1985). This approach 

has been used in previous paleoanthropological studies (Richmond and Jungers, 1995; 

Madar et al., 2002; DeSilva et al., 2006; Richmond and Jungers, 2008) including a study 

of the primate ankle (Seiffert and Simons, 2001). This approach essentially asks the 

question: Given an equal amount of bone, where in the joint does the primate distribute 

this limited resource? The following fossils were complete enough for these measures to 

be taken accurately: NAP I’58, BUMP 764, KNM-MV 2, KNM-RU 1939, KNM-RU 

2036, KMM-RU 3589, KNM-MB 11973, and KNM-BG 35250. The KNM-BG 35250 

tibiae are severely distorted and results should be interpreted with caution.  

TALUS 

 2.) The talus was measured in a slightly different way. Three measurements were 

taken on isolated tali: the maximum width of the talar trochlea at its most anterior aspect, 

the maximum width of the talar trochlea at its most posterior aspect, and the maximum 

length of the malleolar facet on the medial side of the talar body. Although some have 
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Figure 3.1. Measurements taken on articular surface of the distal tibia 

 

Figure 3.1. Six measurements were taken on the articular surface of the distal tibia and 
are illustrated here on a left gorilla distal tibia in inferior view. The geometric mean of 
these six measures was calculated used to size-standardize each of the measurements as 
explained further in the text. 
 

simply divided the anterior width of the talus by the posterior width to assess the degree 

of talus wedging (Barnett and Napier, 1952), Brenner et al. (2003) recently suggested that 

another approach is more appropriate to account for the possible role of body size in talar 

scaling. The primate talus is modeled as a partial cone with the apex of the cone 

positioned medially, and both the lateral and medial aspects of that cone sharing a similar 

radius of curvature (Inman, 1976; Bremer, 1985; Latimer et al., 1987; Donatelli, 1990). 

The wedging of the talus, or the expansion of the anterior aspect of the bone relative to 

the posterior articular surface was quantified using the geometry of a trapezoidal shape 
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extracted from the partial cone (Figure 3.2). Talar wedging was calculated as the angle 

formed between a line drawn along the lateral body of the talus from the posterolateral 

corner to the most anterolateral extent of the articular surface, and a line drawn from the 

same posterolateral corner of the talar trochlea perpendicular to the medial aspect of the 

bone (Figure 3.2). This angle was calculated as the arctangent of the difference between 

the anterior and posterior widths of the talar trochlea, over the medial length of the talar 

surface following the protocol of Brenner et al. (2003). This was converted into degrees 

by multiplying the result by (180/π).  This approach treats the anterior and posterior 

widths of the talar trochlea as parallel measurements. This approach was compared to the 

simple division of anterior width by posterior width mentioned above and the pattern of 

the results obtained were the same. The following fossil tali were complete enough for 

this measure to be taken: CA 1305, LG 621, SO 389, SO 392, SO 478, SO 967, SO 968, 

SO 1402, RU 1743, RU 1744, RU 1745, RU 1748, RU 1896, RU 2036, RU 5940, RU 

5945, BG 35250, MB 9422, and RUD 27. Damage exists on the anterior, posterior or 

medial aspects of SO 1705, WK 17171, WK 18120, and GSP 10785 was but the wedging 

angle could still be calculated with confidence. Damage was too severe on the posterior 

aspect of BMNH M26309, RU 3105, RU 5872, RU 1663 and MY 34 for an accurate 

wedging angle to be calculated.   

TALOCRURAL MOBILITY 

3.) The mobility of the talocrural joint was measured as a function of the depth of 

the distal tibial surface. Photographs were taken of all tibiae in lateral view with a ruler in 

the same plane as the measurement to be taken, and imported into the program Image J. 

The line tool was used to measure the distance between the anterior and most posterior 
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Figure 3.2. Measurements and calculations used in the study of the anthropoid talus 

 

Figure 3.2. Measurements and calculations used to assess the degree of wedging and the 
apical angle of the anthropoid talus. On the left, the geometry of the talus is roughly 
trapezoidal in superior view, allowing the angle γ to be calculated as the arctangent of the 
difference of the anterior and posterior widths of the bone over the length of the medial 
facet. The talus can be modeled as a cone (right), with the apical angle calculated as 
described in the figure. These measurements are related to one another with an increased 
wedging of the talus resulting in, or from, a larger apical angle.  
 

distally extending lips of bone. A perpendicular line was drawn from this line to the point 

of greatest depth of the tibial articular surface (Figure 3.3). Tibiae that are flatter in the 

anteroposterior direction are hypothesized to facilitate more dorsiflexion. A tibial surface 

with a greater depth (i.e. more concave) is hypothesized to result in the most anterior 

aspect of that surface hitting the talar neck before significant dorsiflexion can be 

achieved. The depth of the tibial surface was measured on the following fossil tibia: LG 

583, BUMP 99, BUMP 764, NAP I’58, RU 1939, RU 2036, RU 3589, BG 35250, MB 

11973, and all of the fossil Theropithecus tibiae listed in Table 3.3. Damage to the  
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Figure 3.3. Method for calculated depth of tibial surface and radius of curvature 

 
 
Figure 3.3. Anthropoid distal tibia illustrated in lateral view. The depth of the tibial 
articular surface was measured as shown in the diagram to the left and calculated as 
(h/L)*100. In addition, the arc length of the distal tibia was calculated as the radius of 
curvature of the tibial surface * the central angle. With the tibial facet treated as a circle 
(shown enlarged to the right), the length of a chord (L) and a perpendicular line between 
that chord and the rim of the circle (h) can be used to calculate the radius of curvature and 
the central angle. The same methods were employed on the medial and lateral aspects of 
the talus to calculate the radii of curvature of that bone. 
 
anterior and/or posterior rims prevented accurate tibial depth measurements in KNM-MV 

2. 

 4.) The mobility of the talocrural joint was also measured as a ratio of the amount 

of bone in the anteroposterior aspect of the distal tibial metaphysis versus the amount of 

bone in the mediolateral dimension. It is hypothesized that species with a more 

rectangularly shaped distal tibia will have a greater range of movement over the talus 

than those species with a more square shaped distal tibia. The mediolateral width of the 

tibial metaphysis was measured as the maximum mediolateral dimension taken at the 

point when the medial malleolus begins to curve medially, just superior to the distal 

articular surface, so as to not include the medial malleolus in the measurement. The 
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anteroposterior dimension was the maximum width perpendicular to the mediolateral 

dimension. This measurement was taken in the following Miocene catarrhine tibiae: MV 

2, LG 583, BUMP 99, BUMP 764, NAP I’58, RU 1939, RU 2036, RU 3589, BG 35250, 

MB 11973, and all of the fossil Theropithecus tibia listed in Table 3.3. The KNM-BG 

35250 Nacholapithecus distal tibiae are so severely distorted that it was not possible to 

measure these elements with any accuracy.  

 

Abduction 

 With the talus modeled as a partial cone, the apical angle should be proportional 

to the degree of abduction, with a high apical angle resulting in a greater degree of 

abduction than a low apical angle (Figure 3.2). This is because the distance traveled by 

the tibia on the lateral aspect of the talus is greater than the distance traveled on the 

medial side of the talus. The apical angle can be approximated using the geometry shown 

in Figure 3.2, following the protocol of Bremer (1985). Using the relationship of a right 

triangle, the arcsin of the posterior width of the talar trochlea over the anterior width of 

the talar trochlea gives the approximate angle (in radians) opposite the apical angle. This 

value is converted to degrees by multiplying the resultant by (180/π), and the apical angle 

is calculated by subtracting this final angular value from 90˚. This approach regards the 

lateral and medial rims of the talar trochlea as being roughly parallel with one another. 

Although morphologically this is not the case, it is suggested that this assumption is a 

reasonable one when estimating the apical angle. The tali complete enough to take this 

measure of talar abduction were the same as those for which talar wedging could be 

assessed (listed above).  
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 The measure on the talus described above assumes that the corresponding tibia 

has equal sides to the lateral and medial aspect. In cases where isolated tali are being 

studied, this must be assumed; however, the degree of foot abduction possible in the 

ankle can also be assessed as the ratio of distance traveled by the tibia over the talus on 

the lateral side of the joint to the distance traveled by the tibia over the talus on the 

medial side of the joint. The total distance traveled along a curved surface is 

approximately the radius of curvature * the central angle (Figure 3.3). The radius of 

curvature was calculated using the following equations relating the radius of curvature (r) 

to the length of a chord measured as the length of the tibial articular surface (L), the 

height of the chord measured as the depth of the tibial surface (h): 

1.) r2 = (L/2)2 + (r-h)2 

2.) r2 = (L/2)2 + r2 -2rh + h2 

3.) 2rh = (L/2)2 + h2 

4.) r = ((L/2)2 + h2)/2h 

The central angle was calculated using the following equations relating the radius of 

curvature and the length of the chord: 

1.) sin (1/2) α = ((L/2))/R 

2.) (1/2) α = (arcsin ((L/2))/R) * (180/π) 

3.) α = 2 * (arcsin ((L/2))/R) * (180/π) 

The same equations were used to calculate the total distance traveled along the 

medial and lateral aspects of the talar surface. Tali were photographed in medial and 

lateral view with a Nikon D100 digital camera, and the images were imported into the 

program Image J. All of the photographs had a ruler positioned in the same plane as the 
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malleolar surface of the talus. In Image J, a chord was drawn from the most anterior to 

the most posterior aspect of the articular surface equal in length to what was measured 

with digital calipers on the actual bone. A line was drawn perpendicularly from this chord 

to the most superior point on the talar dome and measured to the nearest tenth of a 

millimeter. With the chord length and the height, the radius of curvature and the central 

angle of the medial and lateral aspects of the talar joint surfaces were calculated using the 

equations above.  

Data on the tibia and tali from the same individuals were aligned and the arc 

length on the lateral aspect of the tibia was subtracted from the arc length on the lateral 

aspect of the talus to get a raw measurement in mm of the total distance that the tibia 

could travel along the talus. The same was done for the medial aspect of the talocrural 

joint. Because this study is interested in abduction during dorsiflexion, only one-half of 

the total movement of the tibia on the talus was considered. The angle of abduction 

during dorsiflexion was calculated as the arctangent of the width of the talus at its 

midpoint divided by the difference between the distance traveled laterally and the 

distance traveled medially. This angle was then subtracted from 90˚ to obtain the angle 

that the foot would take relative to the tibial shank during dorsiflexion.    

Applications of this value to the hominin fossil record necessitate the presence of 

associated tibia and tali, for which only the KNM-RU 2036 ankle is complete enough for 

this calculation to be made.  

 

Inversion  
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When the ankle is loaded in inversion, stress shifts to the medial aspect of the 

joint and is borne in part by the medial malleolus of the distal tibia. The thickness of the 

medial malleolus was taken at the midpoint of the malleolus at its most superior junction 

with the articular surface of the distal tibia. The thickness of the malleolus is reported 

here relative to the anteroposterior length of the medial malleolus, which was measured 

as the maximum anteroposterior length perpendicular to the medial malleolar width. The 

medial malleolus was complete enough on all tibiae listed in Table 3.3 for this 

measurement to be taken.   

Additionally, it has been shown that there is a correlation between increasing 

body mass and decreasing radius of curvature of the talus in primates (Latimer et al., 

1987), and thus an adaptation to efficiently distributing the load borne on the talus may 

include a flattening of the joint. In an isolated talus, the ratio of the radius of curvature on 

the medial side of the joint to the radius of curvature on the lateral side of the joint may 

provide evidence for whether the ankle was being loaded on the medial or lateral side. 

The radius of curvature values for the medial and lateral sides of the talus were calculated 

using the methods described in the “abduction” section above, and are reported as a ratio 

of one another. This ratio could be calculated on those same tali listed in the “abduction” 

section above.  

 

Multivariate analysis on the distal tibia 

A non-stepwise discriminant function analysis was performed on the size-adjusted 

measures of the distal tibia using SPSS 14.0. Included in this analysis were the 6 

dimensions of the distal tibia and also three dimensions of the medial malleolus: the 
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maximum anteroposterior length, maximum mediolateral width, and maximum 

superoinferior height. The geometric mean (GM) of these nine measurements was 

calculated and each raw value divided by the GM, which were then all entered into the 

discriminant function. All of the fossils were entered as separate groups. This provided a 

test of the hypothesis that the measures predicted to be biomechanically relevant were in 

fact the ones that best discriminate the distal tibiae of vertically climbing apes and 

atelines, cercopithecoids, and Cebus.  

 

Allometry 

 The influence that an increase in body size may have on some of these parameters 

was also tested. Rafferty et al. (1995) has found that the mediolateral width of the 

midpoint of the tibial articular surface correlates strongly with body mass in catarrhine 

primates (r= .982). Therefore, mediolateral width of the trochlear surface of the distal 

tibia can be used as a proxy for body mass in testing how features scale with increase in 

size. Before this is done, however, it is important to establish that the mediolateral width 

of the tibial surface scales geometrically with body mass. Isometric scaling between the 

mediolateral width of the tibial surface and body mass would necessitate a relationship in 

which the mediolateral width of the distal tibia scales with (body mass)1/3 and thus a 

predicted isometric scaling equation between body mass and mediolateral width of the 

tibial surface would be: 

Log10(mediolaterally width) = log10(body mass) * 0.333 – constant 
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The equation presented in Rafferty et al. (1995) is: 

LogeBW = logeTIBWI * 2.721 – 4.376 

 

“BW” is body weight and “TIBWI” is the mediolateral width of the tibial surface. 

LogeBW is converted to log10BM using the following relationship: 

 

LogeBW = log10BW * Loge10 

Loge10 = 2.303 

 

Therefore, LogeBW = logeTIBWI * 2.721 – 4.376 is the same as: 

 

Log10BW *2.303 = log10TIBWI * 2.303 * 2.721 – 4.376, which simplifies to: 

 

log10TIBWI = Log10BW * .3675 - .698 

 

 Though slightly larger than the .333 predicted for isometric scaling, the calculated 

slope of .3675 using Rafferty et al.’s (1995) equation is similar enough to isometry, that it 

can be reasonably argued that the mediolateral width of the tibial surface scales 

isometrically with the cube root of body mass. Given that relationship, allometric scaling 

of skeletal correlates of vertical climbing in the distal tibia was tested. Tests of allometry 

were limited to the anterior width of the distal tibia, and the mediolateral width of the 

medial malleolus because post hoc these measurements best discriminate vertical 

climbing primates and the potential effect of size on these results must be considered. 
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These measurements were log10 transformed for all primate tibia examined. The 

regression equation between each of these variables and the log10 transformed 

mediolateral width of the distal tibia at its midpoint was calculated using reduced major 

axis regression using RMA v.1.17 (Bohonak, 2004) which was chosen over least squares 

regression because of the error associated in measuring the dependent variable (Sokal and 

Rohlf, 2001). The 95% confidence interval was calculated for the slope of the regression 

line for all species and some larger taxonomic categories (i.e. ateline, apes, 

cercopithecoids) to test whether the thickness of the medial malleolus or width of the 

anterior aspect of the tibial articular surface exhibits allometric scaling.  

 The potential role of size in affecting the morphology of the distal tibia in fossil 

hominoids was assessed by testing the hypothesis that the large Proconsul major distal 

tibia (NAP I’58) is a size-scaled version of the Proconsul nyanzae distal tibia (KNM-RU 

1939). The eleven measurements taken on the distal tibiae (six measurements on the 

articular surface, three measurements of the medial malleolus, and two measurements on 

the metaphysis) were size-standardized by taking the geometric mean (GM) of these 

measures, and dividing each raw measurement by the value of the GM. Euclidean 

distances between the fossils were then calculated as the square root of the squared sum 

of differences between the eleven size standardized values.  

This value of morphological distance between the NAP I’58 tibia and the KNM-

RU 1939 tibia was then compared to three models models of a size-scaled version of the 

distal tibia. The first was an intraspecific model in which size scaled versions of a similar 

morphology were males and females of a sexually dimorphic species. Three species were 

used in this model: Nasalis larvatus (males 20.4 kg; females 9.8 kg); Pan troglodytes 
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(males ~50 kg, females ~40 kg); Gorilla gorilla gorilla (males ~170 kg; females ~72 kg) 

(Smith and Jungers, 1997). Euclidean distances between males and females of the same 

species were determined by an exact resampling method. The Euclidean distance between 

the size standardized values of the distal tibia for every pairing of male and female within 

Nasalis, Pan troglodytes, and Gorilla gorilla gorilla was calculated. A histogram 

showing the distribution of values for all possible pairings within a species was 

constructed and the morphological distance between NAP I’58 and KNM-RU 1939 

within that distribution was determined. The second model calculated a distribution of 

morphological distances between species of a difference size that engaged in a similar 

form of locomotion. Gorilla gorilla gorilla and Pan troglodytes were selected to 

represent this model and the distribution of morphological variation between the distal 

tibiae of these species was calculated using an exact resampling approach. Every 

chimpanzee distal tibia was matched with every gorilla tibia and the Euclidean distance 

between each pair was calculated. The morphological distance between NAP I’58 and 

KNM-RU 1939 was assessed within the distribution of morphological variation that 

exists between chimpanzee and gorilla tibia. Finally, a third model tested the range of 

morphological variation that exists between taxa of differing body size and differing 

locomotor modes. Pan troglodytes and Papio spp. were selected and the distribution of 

morphological variation in the distal tibia was calculated using the exact resampling 

approach mentioned above.  
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Results 

 

Dorsiflexion 

 DISTAL TIBIA 

1.) Vertically climbing apes and the ateline primates have a relatively wide 

anterior aspect of the tibial articular surface, whereas the cercopithecoids and Cebus have 

a narrowed anterior tibial articular surface (Figure 3.4). Terrestrial cercopithecoids and 

arboreal cercopithecoids have a statistically identical width of the anterior aspect of the 

distal tibia (p=0.99) as do the genera Hylobates and Symphalangus (p=0.48). This 

measurement is also the same between Pan and Pongo (p=0.32) and each of these apes 

and the atelines (p=0.53 for atelines and Pongo and p=0.99 for Pan and the atelines). The 

relative size of the anterior aspect of the distal tibia has the following relationship in 

anthropoids: Gorilla > (Pan = Pongo = atelines) > Hylobates > cercopithecoids > Cebus. 

This measure distinguishes apes and the atelines from the cercopithecoids and Cebus and 

is thus a potentially very useful indicator of frequent vertical climbing involving extreme 

dorsiflexion (Figure 3.5). In addition, body size does not appear to be impacting this 

measure as the anterior width of the tibial surface scales isometrically within all species 

studied. There is a slight allometric effect within the great apes (m= 1.112; 95% C.I.: 

1.044-1.181), though the hominoid clade displayed isometric scaling (m=1.024; 95% C.I. 

0.999-1.049). The role of body size in vertical climbing adaptations is addressed more in 

the discussion.  
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Figure 3.4. Size-standardized shape of articular surface of the anthropoid distal tibia. 
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Figure 3.4. Size standardized representation of the shape of the distal tibia in the 
catarrhine primates: chimpanzees (dark gray circle), lowland gorillas (black circle), 
mountain gorillas (white triangle), orangutans (white square), hylobatids (green circle), 
arboreal cercopithecoids (red triangle), terrestrial cercopithecoids (white diamond with 
red edge), atelines (blue circle), Cebus (light blue diamond). Plotted are the mean values 
and the bars represent one standard deviation. Anterior is towards the top, posterior the 
bottom, lateral towards the right, medial the left. Apes and atelines differ from the 
cercopithecoids and Cebus primarily in having a wider anterior surface to the distal tibia.  
  
 

All of the Miocene tibiae fall within or below the range of values known for 

modern cercopithecoids and Cebus. However, the NAP I’58 distal tibia from P. major 

has the widest anterior aspect to the tibial surface of any Miocene specimen, most similar 

in morphology to modern hylobatids.   
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Figure 3.5. Size-standardized anterior width of tibial articular surface.  

 

Figure 3.5. Boxplots of the size-standardized anterior width of the articular surface of the 
distal tibia show the median (black bar), interquartile ranges (blue/gray), and overall 
ranges of the data. Outliers defined as greater than 1.5 times the interquartile range are 
shown as circles. Vertically climbing apes and ateline primates cluster to the right of the 
graph and are statistically distinct from cercopithecoids and Cebus. The P. major NAP 
I’58 distal tibia has an elongated anterior aspect, much like modern hylobatids.  
 

TALUS 

2.) The wedged morphology of the talus was hypothesized to be a skeletal 

indicator of vertical climbing with a more wedged talus adaptive for the loads incurred 

during extreme dorsiflexion. Although Gorilla, Pan, and the atelines had the most 

wedged tali, this measure did not discriminate climbing Pongo and Hylobates from 

terrestrial cercopithecoids (Figure 3.6). Gorilla has equal talar wedging as atelines (p= 

0.08) and the atelines are statistically equivalent to Pan (p= 0.81). Hylobates and 
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Symphalangus are statistically identical to one another (p= 0.84) and to Pongo (p= 0.99), 

and terrestrial cercopithecoids (p = 1.0). The arboreal cercopithecoids and Cebus have the 

least wedged tali and are statistically equivalent (p = 0.99). The known fossil tali for 

which this measure was possible span the range of talar wedging measured in extant 

primates. All of the tali fall within the range of terrestrial and arboreal cercopithecoids.  

Figure 3.6. Degree of wedging in the anthropoid talus. 

 
Figure 3.6. Boxplots of the wedging angle on the superior surface of the talus in primates 
show the median (black bar), interquartile ranges (blue/gray), and overall ranges of the 
data. Outliers defined as greater than 1.5 times the interquartile range are shown as 
circles. Because of the number of tali, well represented Miocene taxa were grouped 
together:  P. nyanzae (RU 1743, RU 1896, RU 5940) and P. heseloni (RU 2036 left and 
right, RU 1744, RU 1745). Pongo, hylobatids and terrestrial cercopithecoids have 
statistically equivalent wedging angles, limiting the utility of this measure as a vertical 
climbing correlate. Nacholapithecus (KNM-BG 35250), Simiolus (KNM-WK 17171), 
and Anapithecus (RUD 27) have the most wedged tali, like modern African apes and 
atelines.  
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The most wedged tali closer to the Pan range and just outside the interquartile 

range of the terrestrial cercopithecoids are the Anapithecus talus RUD 27, the Simiolus 

talus KNM-WK 17171, and the Nacholapithecus talus KNM-BG 35250.  

 

TALOCRURAL MOBILITY 

3.) The depth of the tibial articular surface was not a good skeletal correlate of 

vertical climbing in primates. Pongo and the atelines had the most shallow tibial surface 

and were statistically identical to one another (p= 1.0). However, the depth of the tibial 

surface was not distinguishable between the African apes and terrestrial cercopithecoids 

(p=0.99), or between Hylobates and the arboreal cercopithecoids (p=0.4). The 

relationship between living taxa is thus: (Pongo = atelines) < (Symphalangus = Pan = 

Gorilla = terrestrial cercopithecoid = Hylobates = Cebus) < arboreal cercopithecoids, 

with the latter group also statistically identical to Hylobates and Cebus. Interestingly, 

many Proconsul specimens, KNM-RU 3589, NAP I’58 and KNM-RU 2036 and the 

Nacholapithecus tibiae have relatively shallow, Pongo and ateline-like tibial surfaces 

(Figure 3.7). Caution should be used in interpreting the KNM-BG 35250 

Nacholapithecus tibiae as both the left and right were distorted in the fossilization 

process. The small ape tibia BUMP 764 and KNM-LG 586, potentially from a 

Limnopithecus or Micropithecus also have a shallow tibial depth. The P. nyanzae tibia 

KNM-RU 1939, Victoriapithecus KNM-MB 11973, and unassigned small tibia from 

Napak BUMP 99 have deeper tibial facets, more like modern cercopithecoids, Hylobates, 

and African apes.  
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Figure 3.7. Depth of inferior surface of anthropoid distal tibiae. 

 
Figure 3.7. Boxplots of the depth of the articular surface of the distal tibia show the 
median (black bar), interquartile ranges (blue/gray), and overall ranges of the data. 
Outliers defined as greater than 1.5 times the interquartile range are shown as circles. 
This measurement is calculated as a ratio of the depth of the inferior surface (H) and the 
anteroposterior length of the distal tibial surface (L). This measurement does not 
distinguish vertically climbing apes and atelines from more generalized quadrupedal 
primates. Interestingly though, many Miocene tibiae have relatively shallow tibial depths 
away from the cercopithecoid and African ape morphology, and more similar to that 
found in modern atelines and Pongo.  
 

 

4.) The shape of the metaphysis of the distal tibia tends to be mediolaterally wider 

in vertically climbing primates (Figure 3.8). Arboreal cercopithecoids and terrestrial 

cercopithecoids have a statistically similar shape to the distal tibia (p=0.84). Mountain 

gorillas have a slightly more square-shaped distal tibia than lowland gorillas. The shape 

of the tibia is most rectangular in the genus Pongo and most square shaped in terrestrial  
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Figure 3.8. Shape of metaphysis in anthropoid distal tibia. 

 
Figure 3.8. Boxplots of the shape of the metaphysis of the primate distal tibia show the 
median (black bar), interquartile ranges (blue/gray), and overall ranges of the data. 
Outliers defined as greater than 1.5 times the interquartile range are shown as circles. 
Cercopithecoids, Cebus and the hylobatids have a statistically identical morphology of 
the metaphysis of the distal tibia (indicated by black bar). All of the Miocene tibiae have 
a similar morphology except for the P. major NAP I’58 specimen which falls between 
Pan and Gorilla for this measure. 
 

cercopithecoids with the following relationship: Pongo > (ateline = Gorilla gorilla 

gorilla) > (Pan = Gorilla gorilla beringei) > (Hylobates = Cebus = arboreal 

cercopithecoids = terrestrial cercopithecoids). Because Hylobates cannot be distinguished 

from cercopithecoids, the utility of this measure as a skeletal correlate of vertical 

climbing is uncertain. However, the clear separation of the great apes and atelines from 

the cercopithecoids does suggest that a mediolaterally wide metaphysis helps promote 

dorsiflexion. All of the Miocene tibiae have a cercopithecoid and hylobatid-like  
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morphology except for the P. major tibia NAP I’58, which has a metaphyseal geometry 

most like modern African apes Pan and Gorilla.  

 

Abduction 

 Skeletal correlates of foot abduction at the ankle did not distinguish vertical 

climbing apes and atelines from cercopithecoids and Cebus in this study. Although 

Gorilla has the greatest capacity for abduction at the talocrural joint, this measure in 

isolated tali is statistically equivalent between Pan, Hylobates, atelines, Gorilla gorilla 

beringei, and terrestrial cercopithecoids (Figure 3.9). Pongo and the terrestrial 

cercopithecoids have indistinguishable values (p = 0.98) as do Pongo and arboreal 

cercopithecoids (p = 0.46). Fossil tali span the range of possible primate values with 

KNM-SO 478 and KNM-MB 9422 having values only in the range of modern Cebus to 

RUD 27 and KNM-WK 17171 having values within the range of modern apes and 

atelines, outside of the interquartile ranges of the cercopithecoids.  

Measuring the tibia and tali together demonstrates that the angle of abduction at 

the talocrural joint may not be strictly a vertical climbing adaptation. Pongo and Cebus 

have similar measures of foot abduction at the ankle (p= 0.99). The atelines, hylobatids, 

Pan and arboreal cercopithecoids have indistinguishable average values for abduction at 

the ankle (Figure 3.10). Terrestrial cercopithecoids are statistically identical to Pan (p = 

0.07), arboreal cercopithecoids (p = 0.14), and Gorilla (p = 0.88). The only associated 

ankle in the Miocene complete enough for this measure to be taken is from the Proconsul 

heseloni KNM-RU 2036 skeleton. The range of abduction measured at the ankle falls 

directly between the range occupied by Pan and arboreal cercopithecoids on one side, 
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Figure 3.9. Apical angle of the anthropoid talus. 

 
Figure 3.9. Boxplots of the apical angle of isolated tali show the median (black bar), 
interquartile ranges (blue/gray), and overall ranges of the data. Outliers defined as greater 
than 1.5 times the interquartile range are shown as circles. This measure did not clearly 
discriminate locomotor modes, suggesting that foot abduction is an important motion 
regardless of climbing frequency or abilities among primates. All of the apes were 
statistically equivalent to terrestrial cercopithecoids for this measure except for Gorilla. 
Because of the number of tali, well represented Miocene taxa were grouped together:  P. 
nyanzae (RU 1743, RU 1896, RU 5940) and P. heseloni (RU 2036 left and right, RU 
1744, RU 1745). 
 
 

and terrestrial cercopithecoids and Gorilla on the other. Little can be said about 

locomotion using this measure.  
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Figure 3.10. Angle of abduction in anthropoid ankle. 

 
Figure 3.10. Like the apical angle on isolated tali, the total abduction angle calculated 
from associated tibiae and tali, also did not identify different locomotor modes among the 
primate ankles studied. Boxplots of the abduction angle of isolated tali show the median 
(black bar), interquartile ranges (blue/gray), and overall ranges of the data. Outliers 
defined as greater than 1.5 times the interquartile range are shown as circles. Note that 
the African apes were statistically equivalent to the terrestrial cercopithecoids for this 
measure. The only associated Miocene ankle measured was the P. heseloni KNM-RU 
2036 tibia and talus, which fell within the range occupied by the arboreal cercopithecoids 
and Pan on one side and the terrestrial cercopithecoids and Gorilla on the other.  
 

Inversion 

 The medial malleolus is significantly thicker in apes and atelines than in 

cercopithecoids or the platyrrhine genus Cebus. The ateline genera Alouatta, Ateles, 

Brachyteles, and Lagothrix were similar in this measure and collectively atelines had an 

equivalent thickness to the medial malleolus as the genus Pongo (p=0.99) and 

Symphalangus (p=0.82). Despite the different locomotor modes practiced by extant 
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cercopithecoids, the more terrestrial genera (Papio, Mandrillus, Theropithecus, Macaca 

nemestrina) were equivalent to the more arboreal (Nasalis, Macaca fascicularis) in 

having a relatively thin medial malleolus (p=0.99). The relative thickness of the medial 

malleolus across anthropoids is thus: (ateline = Pongo) > Pan > Gorilla > Hylobates > 

(Cebus = cercopithecoid) (Figure 3.11).  

The thickness of the medial malleolus scales isometrically within most genera, 

though there is positive allometry within the hylobatids (m=1.404; 95% C.I. 1.051-

1.758). There is also positive allometry for the thickness of the medial malleolus within 

ceropithecoids (m=1.164; 95% C.I. 1.077-1.251), and weak positive allometry for the 

thickness of the medial malleolus within hominoids (m=1.104; 95% C.I. 1.006-1.203).  

Fossil tibiae from the Miocene tended to have thicker medial malleoli than 

modern cercopithecoids or Cebus, but were generally closer to the cercopithecoid range 

than the ape and ateline range. Two tibiae from Napak, NAP I’58 and BUMP 764, had 

medial malleoli that were within the interquartile range of Hylobates and outside of this 

same range in cercopithecoids. Likewise, the Nacholapithecus tibiae from the KNM-BG 

35250 skeleton had thick medial malleoli, though distortion to this specimen limits the 

confidence of this measure.  

Medial flattening of the talar body is suggestive of an increase load on the 

talocrural joint during positions of foot inversion. The difference between the radius of 

curvature on the lateral aspect of the talus and the medial side of the talus distinguished 

the African apes from the other apes, cercopithecoids, atelines, and Cebus. This measure 

is statistically indistinguishable for all of the extant taxa, except for Pan and Gorilla 
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Figure 3.11. Thickness of the anthropoid medial malleolus.  
 

 
Figure 3.11. Boxplots of the relative width of the medial malleolus show the median 
(black bar), interquartile ranges (blue/gray), and overall ranges of the data. Outliers 
defined as greater than 1.5 times the interquartile range are shown as circles. Vertically 
climbing hylobatids, African apes, Pongo, and the atelines have a significantly thicker 
medial malleolus than the cercopithecoids or Cebus. The Miocene tibiae studied almost 
all fall directly between the ape/ateline morphology and the cercopithecoid morphology. 
The large hominoids P. major NAP I’58, and Nacholapithecus KNM-BG 35250 have the 
thickest medial malleoli.  
 

 (Figure 3.12). Most of the Miocene tali share a similar morphology; however, five tali 

have medially flattened trochlear surfaces and are thus more African ape like. These are 

three fossils often assigned to Rangwapithecus: KNM-SO 1402, KNM-SO 968, and 

BMNH M26309. In addition, the Simiolus tali KNM-WK 17171, and unassigned talus 

KNM-RU 5945 have a medially flat surface.  
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Figure 3.12. Radius of curvature of the anthropoid talus.  

 
Figure 3.12. The African apes have a medially flattened talus relative to other apes and 
anthropoids. Boxplots of the radius of curvature on the medial side of the talus relative to 
the lateral side show the median (black bar), interquartile ranges (blue/gray), and overall 
ranges of the data. Outliers defined as greater than 1.5 times the interquartile range are 
shown as circles. Miocene tali with a flattened medial side include the Rangwapithecus 
specimens SO 1402, SO 968, and M26309, and the Simiolus talus WK 17171. Because of 
the number of tali, well represented Miocene taxa were grouped together:  P. nyanzae 
(RU 1743, RU 1896, RU 3105, RU 5940) and P. heseloni (RU 2036 left and right, RU 
1744, RU 1745). 
 

Multivariate analysis of distal tibiae 

 The distal tibiae of vertically climbing great apes and atelines can be separated 

from the cercopithecoids and Cebus primarily along Function 1 of the discriminant 

function analysis. Along this axis, the hylobatids fall in the morphospace between the 

apes and atelines and the cercopithecoids. The first function is being driven primarily by 

the mediolateral width of the anterior surface of the distal tibia (+0.637), and the 
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mediolateral width of the medial malleolus (+0.601). Terrestrial and arboreal 

cercopithecoids cannot be easily distinguished in this discriminant function analysis. 

Miocene tibiae generally fall within the distribution of the cercopithecoids and 

hylobatids, though the P. major tibia NAP I’58 has a morphology between the hylobatids 

and the genus Pan.  

Figure 3.13. Discriminant function analysis of anthropoid distal tibia. 

 
Figure 3.13. Discriminant function analysis on size-standardized measures of the articular 
surface of the distal tibia. Vertical climbers (atelines, hylobatids, African apes and 
Pongo) are distinguished from the cercopithecoids and Cebus along Function 1, which 
explains 61.9% of the variance. This function is driven primarily by the mediolateral 
length of the anterior aspect of the tibial surface (+.637) and the thickness of the medial 
malleolus (+.601). The Proconsul major tibia NAP I’58 falls between Pan and the 
hylobatids, whereas the other Proconsul tibia fall near the cercopithecoid mean.  
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Allometry 

The hypothesis that the Proconsul major distal tibia (NAP I’58) is a size-scaled 

version of the Proconsul nyanzae distal tibia (KNM-RU 1939) was also tested. The 

Euclidean distance between the morphology of KNM-RU 1939 and NAP I’58 is 0.464. 

The 95% confidence interval of the mean for the Euclidean distance between male and 

female pairs of the same species is: Nasalis (0.277-0.294), Gorilla (0.304-0.322), Pan 

(0.310-0.329). The 95% CI for the mean Euclidean distance between Gorilla and Pan is 

0.372-0.378, whereas the 95% CI for the mean difference between Pan and Papio is 

0.442-0.450.  

In 342 possible combinations resampled from Nasalis males and females, 7 pairs 

(2.1%) had a morphology more distinct than NAP I’58 and KNM-RU 1939 (Figure 3.14). 

In 342 possible combinations resampled from Pan troglodytes males and females, 29 

(8.5%) had a morphology more distinct than NAP I’58 and KNM-RU 1939. In 418 

possible combinations resampled from Gorilla gorilla gorilla males and females, 33 

(7.9%) had a morphology more distinct from NAP I’58 and KNM-RU 1939. Therefore, 

although it is statistically possible to sample from a sexually dimorphic species (Nasalis, 

Gorilla, Pan) a large distal tibia and a small distal tibia that are morphologically as 

distinct from one another as NAP I’58 is from KNM-RU 1939, it is unlikely. It is 

noteworthy that the tails of these distributions all skew to the right, suggesting that the 

pairs that exhibit the greatest differences are being caused by a few morphologically 

unusual tibiae. The hypothesis that NAP I’58 is a scaled up version of KNM-RU 1939 in 

the same way that Gorilla is a scaled up version of Pan, was better supported. In 2,107 

possible combinations resampled from Gorilla gorilla gorilla and Pan troglodytes, 360  
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Figure 3.14. Shape differences of the distal tibia within and between sexually dimorphic 
anthropoids. 

 
Figure 3.14. Histograms showing the distribution of Euclidean distances calculated 
through exact resampling of all possible pairs of distal tibial morphologies drawn from 
five different populations. The top three histograms show the distribution of expected 
differences between males and females drawn from the sexually dimorphic primates 
Gorilla gorilla gorilla, Nasalis larvatus, and Pan troglodytes. In each, the Euclidean 
distance between NAP I’58 and KNM-RU 1939 is represented as a vertical black line and 
the percentage of pairs more similar to one another than the fossil pair to the left of the 
line and the percentage of pairs more different to one another than the fossil pair to the 
right. The two graphs on the bottom show the frequency of Euclidean distances 
calculated through exact resampling of two different species (Gorilla gorilla gorilla  and 
Pan troglodytes on left; Pan troglodytes and Papio spp. on right). Again, the Euclidean 
distance between NAP I’58 and KNM-RU 1939 is represented as a vertical black line and 
the percentage of pairs more similar to one another than the fossil pair to the left of the 
line and the percentage of pairs more different to one another than the fossil pair to the 
right. The difference between NAP I’58 and KNM-RU 1939 is best modeled by the 
difference between Pan and Papio, though distal tibia with these morphological 
distinctions could conceivable by drawn from any of the five modeled populations.  
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(17.1%) had a morphology more distinct than NAP I’58 and KNM-RU 1939. The pattern 

of difference observed between NAP I’58 and KNM-RU 1939 is best accommodated by 

the differences calculated from resampling from Pan and the smaller Papio. In 1,813 

possible resampled pairs, 728 (40.2%) had a morphological difference greater than that 

calculated for NAP I’58 and KNM-RU 1939; and 1,085 pairs (49.8%) had a difference 

less than what is calculated between the two Proconsul tibiae. The morphological 

distance between NAP I’58 and KNM-RU 1939 is thus best modeled with species whose 

size and locomotor patterns differ.  

 The question of where there are morphological differences in the distal tibia of 

sexually dimorphic taxa, differently sized species of similar locomotor mode, and 

differently sized species of different locomotor modes, can be used to better interpret the 

observed differences between the NAP I’58 and KNM-RU 1939 tibiae. The coefficient of 

variation in the distal tibia of Pan, Gorilla and Pongo is relatively invariant in the 

anterior width of the tibial articular surface (Table 3.5). Both Pan and Gorilla exhibit the 

greatest variance in the SI height of the medial malleolus, the posterior width of the 

articular surface and the lateral length of the articular surface. The SI height of the medial 

malleolus and the posterior width vary considerably in Pongo and in Nasalis as well, with 

the third most variant feature being the medial length of the tibial articular surface and 

the width of the medial malleolus for Pongo and Nasalis respectively. Like Nasalis, 

Papio has a variant width to the medial malleolus, like Pongo, a variant medial trochlear 

length, and like Pan and Gorilla, a variant lateral trochlear length. If NAP I’58 and 

KNM-RU 1939 differed in only these regions that are variant in extant catarrhines, then 

the differences between them may be regarded as functionally insignificant. For the four 
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most distinct features separating NAP I’58 and KNM-RU 1939, only one, the medial 

width of the tibial articular surface is often a variant feature in Papio and Pongo (though 

quite invariant in Nasalis). The width of the anterior aspect of the tibial surface is quite 

invariant in the African apes and is hypothesized to be related to vertical climbing, and 

the overall shape of the tibial metaphysis may reflect a distinct loading regime on the 

distal tibia. Interestingly, functionally significant features are relatively invariant in 

modern taxa and differ considerably between NAP I’58 and KNM-RU 1939.  

Table 3.5. Coefficient of variation for size-standardized measures of the distal tibia. 
 

ML 
epiph 

AP 
epiph 

AP L. 
troch 

AP 
mid 

AP M. 
troch 

ML A. 
troch ML mid 

ML P. 
troch 

SI 
height 

AP 
length 

ML 
width 

Pan 6.91 5.77 7.90 7.08 6.76 4.09 4.78 7.78 9.39 6.16 7.57
Gorilla 7.00 6.93 7.53 6.09 6.89 3.86 6.24 7.05 7.97 4.63 6.43
Pongo 7.20 6.27 8.15 5.14 10.39 6.09 5.76 8.73 13.99 5.38 8.22
Papio 5.48 5.43 7.16 4.84 10.46 5.37 4.43 5.71 6.15 4.39 6.26
Nasalis 6.93 5.73 6.79 3.91 4.25 4.81 4.60 7.34 8.09 5.79 7.00
            
NAP I'58 
RU 1939 14.03 11.78 5.66 4.44 11.42 8.31 5.83 3.79 1.42 1.02 3.79
 
Yellow = Relatively low variation 
Red = Relatively high variation 
 

Discussion 

 Apes and atelines possess a talocrural joint adapted for frequent bouts of vertical 

climbing. Relative to cercopithecoids, apes and atelines have a relatively broader anterior 

aspect to the distal tibia (Figures 3.4, 3.5, and 3.13), which may allow more efficient 

distribution of forces through the joint while it is loaded in extreme dorsiflexion.  

Additionally, the medial malleolus is relatively mediolaterally thicker in the apes and 

atelines than in cercopithecoids (Figures 3.11 and 3.13). This morphology may adapt the 

ankle to withstand the increased medial loads incurred by the joint while loading the foot 
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in inversion, as is known from kinetic studies on vertically climbing chimpanzees 

(Wunderlich, 1999).  

In addition, the distal tibia is mediolaterally wide, or rectangular, at the 

metaphysis in apes and atelines that vertically climb. This morphology was hypothesized 

to be related to joint mobility, with an anteroposteriorly reduced tibial length permitting 

an increased range of dorsiflexion. However, this measure does not distinguish the 

vertically climbing hylobatids from cercopithecoids. Isler (2003) has noted that 

hylobatids do not pull themselves as close to the vertical substrate as the larger apes 

because the cost of climbing may be less due to their smaller body mass. Hylobatids may 

therefore not possess all of the vertical climbing adaptations found in the ankle of great 

apes, though it is important to note that although hylobatids do not have a mediolaterally 

wide tibial metaphysis, the similarly sized atelines primates do. The significance of this 

difference is unclear, though more detailed comparative kinematic analysis of atelines 

and hylobatids may reveal important differences at the ankle.  

 Similarly, the African apes and ateline primates have a more strongly wedged 

talus than cercopithecoid monkeys (Figure 3.6). This morphology was thought to 

represent the reciprocal of the mediolaterally wide anterior aspect of the distal tibia. 

However, unlike the distal tibia, the talus is morphologically similar in Pongo, the 

hylobatids, and the terrestrial cercopithecoids for degree of talar wedging. This may 

reflect loading of the talocrural joint in positions of both dorsiflexion and plantarflexion 

and in Pongo may be a result of occasional hindlimb suspension and grasping. In 

addition, the radii of curvature on the medial and lateral aspects of the talus distinguish 

African apes from the other anthropoids, but this measure is no different in Asian apes or 
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atelines from the cercopithecoids (Figure 3.12). Interestingly, African apes have 

relatively thinner medial malleoli than Pongo or the atelines. It is possible that African 

apes do not load their talocrural joints in as extreme a position of inversion as Pongo and 

atelines and thus the medial aspect of the tibia and talus bear the brunt of the load in 

Gorilla and Pan whereas the medial malleolus and cotylar fossa of the talus absorbs the 

majority of the force during climbing in Pongo and the atelines. These variations in 

morphology of the talocrural joint may reflect subtle differences in locomotion and 

vertical climbing kinematics among the apes and ateline primates. Additional kinematic 

data during vertical climbing bouts in all apes and ateline primates will be necessary to 

test the hypothesis presented here that these shared morphological features are 

functionally related to vertical climbing and not some other form of locomotion in which 

the ankle is loaded in dorsiflexion and inversion.  

 Though the tibia and talus of vertical climbing primates differ from 

cercopithecoids and Cebus in some respect related to dorsiflexion and inversion, there 

appear to be no locomotor related differences among the primates for measures of 

abduction (Figures 3.9 and 3.10).  There were also few differences in overall morphology 

of the talocrural joint between terrestrial cercopithecoids and more arboreal 

cercopithecoids.  

 

Explaining Gorillas 

 Although the mediolaterally wide anterior aspect of the distal tibia is consistent 

with predictions from the biomechanical model of vertical climbing (Chapter 2), and the 

vertically climbing atelines and apes can be distinguished from cercopithecoids and 
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Cebus for this measure, it is unclear why the greatest average value is found in lowland 

gorillas (Gorilla gorilla gorilla). The anterior width of the tibial facet scales isometrically 

within gorillas, within the African apes, and within the non-human hominoids so there is 

little evidence that this morphology can be explain simply as an effect of body size. 

Lowland gorillas are quite arboreal (Remis, 1995; Kuroda et al., 1996; Tutin, 1996), and 

thus it should not be surprising that they are adapted for vertical climbing. Remis (1995) 

has even suggested that female gorillas are as suspensory and arboreal as chimpanzees. 

However, lowland gorillas may vertically climb in a slightly different way than the other 

apes. A study of vertical climbing kinematics found that, in general, apes vertically climb 

in a kinematically similar way, with the knees, elbows, and hips quite flexed. However, 

this study also found that Pan climbs with a more flexed knee than Gorilla (Isler, 2003). 

Isler (2003) noted that both Pan and Gorilla kept their bodies closer to the vertical 

substrate than what is observed in cercopithecoids and thus Gorilla may achieve 

functional equivalence with Pan and compensate for a less flexed knee than Pan with 

even greater flexion at the ankle. Although not enough climbing bouts were observed for 

statistical tests to be applied, it is intriguing that Gorilla appeared to have a slightly 

greater degree of dorsiflexion than Pan in the data presented in Chapter 2. Further 

controlled analyses should be done on the kinematics of climbing to test whether there 

are differences in dorsiflexion at the ankle among the great apes.  

In addition, the role of juvenile positional and locomotor behaviors must be 

considered. Bone is most sensitive and most likely to adapt to frequent loads of great 

magnitude in the juvenile skeleton (reviewed in Pearson and Lieberman, 2004).  In 

humans, the number of osteoblasts is significantly less in adults than in children and thus 
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the ability of the skeleton to remodel itself becomes less efficient with age (Nishida, 

1999). Although the idea that the adult skeleton is a reflection of juvenile loadings has 

been disputed (Ruff et al., 2006), many have argued that pattern formation during 

embryological development (Type I and II traits in Lovejoy et al., 1999) and/or chondral 

modeling during adolescence (Type IV traits in Lovejoy et al., 1999) are important 

factors for interpreting adult skeletal morphology (Hamrick, 1999; Lovejoy et al., 1999; 

Lovejoy et al., 2002). Although lowland gorillas may be as arboreal as chimpanzees 

(Remis, 1995), mountain gorillas are not (Tuttle and Watts, 1985). However, Doran 

(1997) has found that mountain gorillas climb quite frequently right up to the age of five 

years old and during childhood, mountain gorillas climb as frequently as chimpanzees. 

This activity early in life may shape the morphology of the ankle in mountain gorillas and 

may explain why the shape of the talocrural joint in these largely terrestrial apes is so 

similar to the morphology of the chimpanzee ankle.    

 

Vertical climbing in Proconsul major 

 All of the Proconsul fossils studied had, in general, a cercopithecoid-like 

morphology, consistent with other claims that this Miocene catarrhine was a pronograde, 

above branch arboreal quadruped (Walker and Pickford, 1983; Rose, 1993; Rose, 1994; 

Walker, 1997). Le Gros Clark (1952) noted that the tali of P. nyanzae are “strikingly” 

cercopithecoid-like and this author concurs.  

Data from the Napak distal NAP I’58, however, tentatively suggests that 

Proconsul major may have been capable of some degree of modern ape-like vertical 

climbing. The anterior aspect of the bone is enlarged, a feature found only in the distal 
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tibia of apes and atelines. This distribution of bone gives the articular surface a trapezoid-

like appearance in contrast to the more rectangular shape of the distal tibia in 

cercopithecoids and in other proconsulid distal tibiae (Figure 3.15). In addition, like the 

morphology found in apes and atelines, the P. major medial malleolus is mediolaterally 

wide relative to the anteroposterior length of the malleolus. The increased width of the 

medial malleolus and the increased width of the anterior aspect of the articular surface 

may be adaptations for distributing forces through a bone loaded in inversion and 

dorsiflexion, positions critical for efficient vertical climbing. Furthermore, like the 

condition of modern great apes and atelines, the Napak tibia is mediolaterally wide, 

relative to its anterioposterior length. This morphology would allow increase range of 

motion at the ankle, and permit greater dorsiflexion. These data are in contrast to 

suggestions that the P. major tibia is morphologically similar to the smaller Proconsul 

tibiae (Rafferty et al., 1995). Instead, it is suggested here that P. major may have be 

capable of more modern ape-like positional behaviors than other members of its genus. 

These data support other suggestions for a more modern ape-like morphology of the ulna 

of P. major (Nengo and Rae, 1992), the calcaneocuboid joint (Gebo, 1989), and are 

consistent with evidence for an enhanced range of pronation and supination at the elbow 

present in a recently discovered distal humerus and proximal radius of P. major from 

Napak (MacLatchy et al., 2007; pers. obs.). Others have also suggested that Proconsul 

major (= “Ugandapithecus” major) engaged in tree climbing activities and was well 

adapted to arboreality based primarily on the morphology of the femur (Gommery et al., 

1988; Gommery et al., 2002).  
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Figure 3.15. Shape of distal tibiae in Proconsul. 

 
Figure 3.15. Left tibiae of (top) Pan troglodytes and Papio anubis; and (bottom) NAP 
I’58 and KNM-RU 1939. The specimens have been scaled to approximately the same 
size. Notice the square-shape to the articular facet on the Papio anubis and Proconsul 
nyanzae tibiae, and the more rectangular shaped facet on Pan troglodytes and Proconsul 
major.  
 

 The KNM-SO 389 talus is very similar to tali from P. nyanzae and thus the tarsal 

side of the ankle in P. major may not be as adapted for vertical climbing as the tibia 

(Figure 3.16). It is unclear how to interpret this apparent discrepancy, though it may be 

important to note though that the distal tibia is from an ape that would have been 

approximately 77 kg, whereas the talus was from a smaller individual of 50 kg. The role 

of body mass in vertical climbing adaptations is discussed more below. Despite many 

similarities to P. nyanzae tali, the SO 389 talus differs from other tali of Proconsul in two 
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important qualitative ways. The distolateral aspect of the trochlear surface is robust and 

projecting in known tali from P. nyanzae and P. heseloni, and the articular surface on the 

anterior aspect of the talus is U-shaped, suggesting limited loading in dorsiflexion. This 

morphology is found in modern cercopithecoid tali and in the genus Cebus. KNM-SO 

389, though still more like Proconsul than modern apes or atelines for this feature, has a 

weaker distolateral aspect to the talus, and an articular surface that extends to a more 

distal location than in any of the five P. nyanzae tali known. This morphology is 

consistent with increased loading in a position of dorsiflexion in P. major. In addition, 

the KNM-SO 389 talus has a robust lateral tubercle. The posterior talofibular ligament, 

an important ankle stabilizer during dorsiflexion (Leardini et al., 2000), inserts on the 

lateral tubercle and a strongly developed tubercle in the P. major talus may suggest 

frequent dorsiflexion in this species. A large lateral tubercle can be found in modern 

gorillas, chimpanzees, and is particularly large in the genus Pongo. A tubercle is often 

absent in cercopithecoids and is variably present in hylobatids. This morphology is also 

absent from the other Proconsul tali except for KNM-SO 1705, which may be from P. 

africanus, and KNM-RU 5940 (P. nyanzae), which has a weakly developd lateral 

tubercle. In sum, these data from the ankle suggest that the postcranial anatomy of 

Proconsul major may not have simply been scaled-up version of the smaller Proconsul 

species and may have been adapted to more frequent bouts of vertical climbing. The 

overall functional morphology of this large ape should be revisited.  

These data are important in addressing the hypothesis that increased body size may have 

resulted in evolutionary changes related to forelimb suspension, orthogrady, vertical 

climbing and quadrumanous climbing. The possibility that an increase in body size may 
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Figure 3.16. Proconsul tali. 

 
Figure 3.16. Fossil tali of Proconsul nyanzae from Rusinga Island (left to right): KNM-
RU 3105, KNM-RU 5940, KNM-RU 1896, KNM-RU 1743, and Proconsul major from 
Songhor, KNM-SO 389 in superior view. Note the similar morphology among the tali, 
though also note the robust lateral tubercle and the weakly extended anterolateral 
articular surface on the P. major talus.  
 

have provided the selection pressures for the evolution of the postcranial adaptations 

found in modern apes has been suggested elsewhere (Cartmill and Milton, 1977; 

Wheatley, 1987; MacLatchy, 2004 Model I). Proconsul major is reconstructed as a 50-80 

kg ape (Rafferty et al., 1995). An animal of that size would not be able to remain an 

above-branch arboreal quadruped without restricting its movement to large branches that 

could sustain the force of a very large ape. At a certain body mass, catarrhines must either 

become terrestrial or evolve adaptations to better distribute the increased weight to many 

different supports. The latter scenario may necessitate the evolution of increased forelimb 

suspension capacity and increased orthogrady. The morphology of the P. major distal 

tibia and the unpublished elbow do not possess adaptations that would stabilize either 

joint in a strictly terrestrial environment. For instance, the tibia lacks a strong medial 

keel, present in cercopithecoid tibiae and argued to stabilize the ankle joint (Chapter 6). 

Thus, P. major was probably at least partially arboreal, and because of its large body size, 

may have evolved modern ape-like adaptations to navigate in this environment safely and 
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efficiently. This interpretation of Proconsul major will have important implications for 

reconstructing the behavior and locomotion of this large Miocene ape. 

 

Other vertical climbers in the Miocene? 

 The tali from Songhor hypothesized to belong to Rangwapithecus (KNM-SO 966, 

KNM-SO 968, KNM-SO 1402, BMNH M26903) have a distinct morphology suggestive 

of loading during extreme dorsiflexion of the ankle, and perhaps vertical climbing. The 

anterior aspect of the talus is expanded and the articular surface for the tibia encroaches 

onto the talar neck and almost to the talar head. The distolateral extension of the articular 

surface, and sulcus between this projection and the talar neck present in cercopithecoid 

and Proconsul tali is conspicuously absent from these four tali assigned to 

Rangwapithecus. Because the distolateral projection of bone is not present in any infant 

primate tali (Figure 3.17), it may be reflective of talar use, and perhaps of increase lateral 

loading of the talocrural joint in cercopithecoids and in the platyrrhine genus Cebus. This 

morphology is therefore evidence of a specific foot functional morphology that results in 

loading of the lateral aspect of the ankle joint. The similarity between these four tali and 

tali from atelines, Hylobates, Pongo, and the African apes in shifting the articular surface 

to a more medial and distal position may be evidence for vertical climbing in 

Rangwapithecus. It is possible that this morphology is related to leaping abilities in 

Rangwapithecus. However, unlike the tali of leaping primates (Gebo and Simons, 1987), 

the four tali described here have a relatively shallow talar groove and therefore reflect a 

joint adapted for mobility rather than stability. Medial cuneiforms perhaps assignable to 

Rangwapithecus are also suggestive of increase hallucial abduction and arboreal climbing  
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Figure 3.17. Development of talar morphology in anthropoids. 

 
Figure 3.17. Ontogeny of the anterolateral lip in the primate talus. On the top row are 
three tali of Pongo and across the bottom are three tali of Nasalis all scaled to roughly the 
same size. The talus on the far left is from a juvenile, the middle an adolescent, and the 
right an adult. Notice that the anterolateral lip present in the Nasalis adult was absent in 
the juvenile and adolescent, suggestive that it is a bony adaptation perhaps to loading of 
the lateral talus. This morphology is present in the KNM-SO 1705 talus (circle), but 
absent in KNM-SO 1402. KNM-SO 1402 has, like Pongo, an anteriorly expanded 
articular surface of the tibia which extends onto the neck of the bone (arrows).  
 

(Nengo and Rae, 1992). The femoral neck of the KNM-SO 399 femur assigned to 

Rangwipithecus has a neck shaft angle in the range of modern atelines and Pongo and 

may indicate the capacity for increased abduction of the hip (Harrison, 1982).  

Others have recognized the similarities between KNM-SO 966, KNM-SO 968, 

and BMNH M26903 and suggested that they belong to Rangwapithecus (Langdon, 

1986). However, Langdon (1986) regarded KNM-SO 1402 and KNM-SO 1705 as both 

belonging to Proconsul africanus. Although it is agreed here that KNM-SO 1705 has a 

talar morphology almost identical to the other Proconsul tali from Rusinga Island and is 

most probably from P. africanus, KNM-SO 1402 shares with SO 966, SO 968 and 

M26903 the distinct extension of the articular surface onto the talar neck and absence of 
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the distolateral sulcus and is suggested to be from a large male Rangwapithecus. There is 

the possibility that KNM-SO 1705 belongs to Rangwapithecus and the four anatomically 

similar tali KNM-SO 966, KNM-SO 968, BMNH M26903, and KNM-SO 1402 belong to 

P. africanus. However, I find this unlikely because Rangwapithecus craniodental remains 

are twice as common as P. africanus fossils at Songhor (Cote, in preparation). A more 

detailed analysis of the postcranial remains from Songhor should be undertaken to test 

the hypothesis proposed here that Rangwapithecus may have been adapted for vertical 

climbing. There are currently no distal tibia known from Rangwapithecus, though a distal 

tibia from this primate, when located, is hypothesized to have a mediolaterally wide 

medial malleolus, an expanded anterior aspect to the talar facet, and a mediolaterally 

wide metaphysis. In addition, the intercollicular groove on the medial malleolus should 

be weakly developed (Chapter 54).  

The extension of the tibial articular facet onto the talar neck described above for 

the four purported Rangwapithecus tali can also be found in the small fragmentary talus 

from Kalodiir KNM-WK 17171 assigned to Simiolus. Importantly, there are many limb 

bones assigned to Simiolus and these reflect some adaptations for forelimb suspension 

(Rose et al., 1992). Evidence from the talus suggests that extreme dorsiflexion during 

vertical climbing may have been a part of the locomotion of Simiolus as well.  

 

Conclusion 

 The talocrural joint of vertical climbing primates has an expanded anterior aspect 

of the distal tibia, a mediolaterally wide medial malleolus, and a mediolaterally wide 

metaphysis. Aspects of the talus and distal tibia are suggestive of a different loading 



 100

regime on the ankle in African apes than in the Asian apes which may be reflective of a 

different overall locomotor pattern, or subtle differences in climbing kinematics at the 

foot. The Miocene catarrhine fossil record is comprised primarily of primates adapted to 

an above branch, pronograde lifestyle. However, the distal tibia from Proconsul major is 

distinct from other Proconsul tibiae and possessed morphologies functionally correlated 

with vertical climbing. In addition, tali from the 10-20 kg catarrhine Rangwapithecus 

provide evidence that this primate loaded its talocrural joint in extremes of dorsiflexion. 

These data suggest that there may have been more locomotor diversity in the Miocene 

than previously suggested, including catarrhines adapted for bouts of modern ape and 

ateline-like vertical climbing. 
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CHAPTER 4 
Vertical climbing adaptations in the ape ankle and the likelihood of arboreality in 

early hominins. 
 
 

Abstract 

 The climbing ability of Plio-Pleistocene hominins has been an ongoing point of 

contention in the paleoanthropological literature. Despite its role in positioning the foot 

properly against the substrate and in distributing forces from the lower limb through the 

foot, the ankle joint has played only a minor role in this debate. Data from wild 

chimpanzees (Pan troglodytes) suggest that during vertical climbing, apes position their 

foot in abduction, inversion, and extremes of dorsiflexion. Based on this kinematic work, 

it was hypothesized that skeletal morphology of the distal tibia correlated with inversion 

and abduction, and extremes of dorsiflexion will distinguish vertical climbing primates 

from those that do not include vertical climbing in their locomotor repertoire. Linear and 

angular measurements were taken on the distal tibia and tali of modern humans, and 

wild-shot chimpanzees and gorillas. This study finds that African apes have a distinct 

ankle morphology adapted for extremes of dorsiflexion, inversion, and abduction typical 

of vertical climbing, including a broad anterior aspect of the distal tibia and talus, an 

obliquely oriented tibia over the talar surface, and a thick medial malleolus. 

 Using the modern chimpanzee as a kinematic model, morphological correlates of 

vertical climbing in the distal tibia and talus were used to interpret fossil ankles of Plio-

Pleistocene hominins. Fourteen hominin distal tibia and 15 tali were studied from 
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Members 4 and 5 from Sterkfontein, South Africa, the Hadar formation in Ethiopia, the 

Lake Turkana region of Northern Kenya, and Olduvai Gorge. These fossils span a 

timescale of human evolution from 4.2 to 1.5 million years ago. In general, the hominin 

tibia and tali show an overall human-like morphology, one poorly adapted for vertical 

climbing. These data from the talocrural joint suggest that if hominins were vertically 

climbing, they were doing so in a manner kinematically different than that practiced by 

modern apes.  

 

Introduction 

 The locomotion of early hominins remains a contentious topic in 

paleoanthropology. Although it is almost universally agreed that the australopiths and 

other early hominins engaged in terrestrial bipedality, the extent to which hominins also 

utilized arboreal resources remains unclear. Some have argued that adaptations for 

bipedality have sacrificed just about any arboreal behavior in our ancestors (Latimer and 

Lovejoy, 1987; Latimer and Lovejoy, 1990; Latimer, 1991; Lovejoy, 2005), while others 

examining the same fossilized remains have regarded australopiths as “gifted climbers” 

(Preuschoft and Witte, 1991), or at least adept in an arboreal setting (Stern and Susman, 

1983; Susman et al., 1984). A study of climbing in our ancestors should start with what is 

known kinematically about climbing in modern primates, and then proceed to identify 

skeletal correlates of climbing in hominins using these extant models. Without testing an 

extant model, it is possible that individual aspects of hominin anatomy that may appear 

more ape-like than human-like will, by default, be regarded as evidence for ape-like 

behavior in our ancestors, including frequent and skilled vertical climbing. In this study, 
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kinematic data on climbing in wild chimpanzees is used to identify skeletal correlates of 

vertical climbing in the ankle joint of African apes. These data are used to interpret the 

functional morphology of 29 fossil tibia and tali from Plio-Pleistocene hominins to test 

the hypothesis that any known hominin species possessed an ankle adapted for vertical 

climbing bouts.  

 

Evidence for climbing in hominins 

 Vertical climbing has served an important role in studies of the origin of 

bipedalism. Based on EMG and kinematic studies, many have argued that morphological 

adaptations for vertical climbing preadapt a primate for bipedalism and may have served 

as an important biomechanical link between arboreality and terrestrial bipedality in our 

ancestors (Stern, 1971; Tuttle and Basmajian, 1974; Vangor, 1977; Fleagle et al., 1981; 

Stern and Susman, 1981; Vangor and Wells, 1983; Yamazaki and Ishida, 1984; Senut, 

1988; Hirasaki et al., 1993; Hirasaki et al., 2000).  

If vertical climbing preadapted hominins for bipedality, then some of the earliest 

hominins may still have retained the ability to climb, or at the very least, retained 

morphological features of their climbing ancestry. It is difficult to know whether the 

plesiomorphic features that some early hominins share with vertically climbing apes were 

being maintained by natural selection and therefore still of adaptive value, or were simply 

not being selected against and were morphological remnants from an arboreal past 

(Ward, 2002). It is notable in this context that most of the arboreal characters found in the 

postcrania of early hominins can be found in the upper limb. The earliest purported 

hominin postcranial remains belong to the species Orrorin tugenensis. The humeral shaft 
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fragment BAR 1004’00 from this 5.8 mya species has a strong attachment for the 

brachioradialis muscle, an important flexor and supinator of the forearm, the manual 

phalanx BAR 349’00 is curved, and a distal thumb phalanx BAR 1901’00 has adaptations 

for climbing (Senut et al., 2001; Gommery and Senut, 2006). These features of the 

forearm are suggestive of arboreal behavior in Orrorin. However, the three Orrorin 

femora have been interpreted as the earliest evidence of bipedalism in the hominin fossil 

record (Senut et al., 2001; Pickford et al., 2002; Richmond and Jungers, 2008).  

Postcranial fossils of the 4.4-5.8 mya genus Ardipithecus are scant. What has been 

revealed about this genus suggests that it was bipedal based on the dorsally oriented facet 

on the proximal end of pedal phalanges (Haile-Selassie, 2001; Semaw et al., 2004). 

However, like Orrorin and later australopiths, Ardipithecus also possessed a long, robust 

upper limb (White et al., 1994) and long manual phalanges (Semaw et al., 2004).  

The KNM-KP 29285 tibia of the 4.2 mya Australopithecus anamensis is well-

adapted for terrestrial bipedalism with anteroposteriorly flattened condyles and a 

perpendicularly oriented distal articular surface relative to the shaft of the bone (Leakey 

et al., 1995; Ward et al., 2001). The femoral shaft is similar to the A. afarensis A.L. 288-1 

femur from Hadar (White et al., 2006). However, Heinrich et al. (1993) identified 

features of the A. anamensis radius from Sibilot Hill KNM-ER 20419 consistent with the 

hypothesis that vertical climbing was still an important component of the locomotion of 

this hominin. The A. anamensis radius has a well developed brachioradialis crest, and the 

orientation of the articular surface of the radial head suggests that this bone was loaded in 

a pronated position, which would increase the mechanical advantage for the 

brachioradialis. Furthermore, the long radial neck would increase the mechanical 
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advantage for the biceps brachii. This is a very long bone likely to have belonged to an 

individual with long, ape-like forearms (Ward et al., 2001). As in Ardipithecus, A. 

anamensis appears to have possessed relatively long manual phalanges as well (White et 

al., 2006). Although it is clear from the morphology of the tibia that bipedality was 

selectively advantageous for A. anamensis, the available evidence from the forelimb 

suggests that A. anamensis was partially arboreal or retained these morphologies from an 

arboreally adapted ancestor (Heinrich et al., 1993; Ward et al., 2001).  

The debate regarding arboreality in our ancestors has focused primarily on the 

~3.0-3.5 mya species Australopithecus afarensis and emphasized the partial skeleton 

A.L. 288-1. The history of the debate has been detailed in Stern (2000) and Ward (2002). 

Fortunately, A. afarensis is one of the best known hominin taxa with many skeletal 

elements represented by multiple fossils, so that individual variation and sexual 

dimorphism can be considered in studies of functional morphology. As with Orrorin and 

A. anamensis, the long, robust, powerfully muscular arms and forearms of A. afarensis 

are often cited as evidence for arboreality (Stern and Susman, 1983; Susman et al., 1984; 

Senut, 1988; Preuschoft and Witte, 1991; Hunt, 1994; Hunt, 1998). The intermembral 

index of the A.L. 288-1 skeleton falls roughly between that of modern humans and the 

value in African apes (Jungers, 1982; Stern and Susman, 1983; Susman et al., 1984). 

Recently, the gorilla-like shape of the scapula and curved manual phalanges of the 

juvenile A. afarensis from Dikika, Ethiopia was presented as evidence for arboreality in 

at least the young of this species (Alemseged et al., 2006). These data on a young 

hominin are important because bone may be more responsive to loads in juveniles than in 

adults (Pearson and Lieberman, 2004).  
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Preuschoft and Witte (1991) suggested that australopiths were “gifted climbers” 

and “well adapted vertical climbers” based on their short hindlimbs, and powerful 

forelimbs. Many have argued that australopiths were adapted for both bipedality and 

arboreality (Prost, 1980; Stern and Susman, 1983; Susman, 1983; Susman et al., 1984; 

Senut, 1988; Rose, 1991). In addition to the powerful forearms, it has been suggested that 

a robust fibula and curved pedal phalanges are evidence for climbing in the lower limb 

(Stern and Susman, 1983; Susman et al., 1984; Susman et al., 1985). A posterior tilt to 

the distal tibia in A.L. 288-1 also puts the ankle in a plantarflexed set and may be an 

adaptation for reaching in branches and/or hindlimb grasping and suspension (Stern and 

Susman, 1983; Susman et al., 1984). This plantarflexed set is not found on the other two, 

larger, distal tibia from Hadar, A.L. 333-6 and A.L. 333-7 and have led some to suggest 

that there may be sex-related differences in locomotion in the australopiths (Stern and 

Susman, 1983; Susman et al., 1984, but see Drapeau et al., 2005). Susman et al., 1984 

(pp. 137) put forth the most detailed hypothesis of climbing kinematics in australopiths:  

We suggest that these early hominins climbed vertical trunks with their 
forefoot (and at times midfoot also) applied to the surface, and that on 
smaller supports, while they grasped with their toes they emphasized use 
of their powerful hands. The sort of foot postures we envision for 
afarensis during vertical climbing are those common to all primates when 
they are on large trunks, viz. the foot is applied to the surface and the 
hallux is not necessarily opposed to the lateral toes. 

 

Stern and Susman (1991) further argued that the lack of an abducted hallux would 

not preclude arboreal climbing in A. afarensis, and cited the absence of a large divergent 

hallux in the capable climber Pongo as an example. The lack of a large divergent toe in 

orangutans has been noted by others as well (Straus, 1926; Keith, 1928; Schultz, 1963; 

Tuttle and Rogers, 1966; Gomberg, 1981). However, Latimer and Lovejoy (1990) 
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convincingly countered that the absence of a large grasping hallux in Pongo is 

compensated for with even more extreme adaptations for climbing including long curved 

digits. Orangutans also have the largest intermembral and brachial indices of any of the 

great apes (Aiello and Dean, 2002). The idea that a climbing australopithecine would 

require even more exaggerated climbing features in regions not related to bipedality (i.e. 

upper limb) to compensate for the loss of lower limb morphology suitable for climbing 

has been suggested by others as well (Wolpoff, 1996; Coffing, 1998; Ward, 2002). 

Besides the arguments over whether the absence of a divergent toe precludes climbing, 

some have proposed that A. afarensis actually did have a grasping hallux based on the 

convex shape of the medial cuneiform (Hunt, 1994, Hunt, 1998; Harcourt-Smith, 2002; 

Harcourt-Smith and Aiello, 2004). This hypothesis would necessitate the presence of 

another species of hominin at this time period, such as Kenyanthropus (Leakey et al., 

2001 but see White, 2003), or increased variability in morphology because the near-

contemporary footprints from the site of Laetoli are definitively absent of a divergent 

great toe (White, 1980; White and Suwa, 1987).  

The arboreal nature of australopiths has been considered for A. africanus as well. 

The “Little Foot” fossil (StW 573) from Member 2 deposits in the Sterkfontein Cave, 

South Africa was originally described as having a divergent toe (Clarke and Tobias, 

1995), though more recent studies of the medial cuneiform suggest that the toe was in-

line with the rest of the pedal digits as in modern humans (Harcourt-Smith, 2002; 

McHenry and Jones, 2006). Nevertheless, the limb proportions of A. africanus have been 

reconstructed to be even more ape-like than those of A. afarensis (Green et al., 2007), 

suggesting that this species had relatively longer arms and therefore may have been even 
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more arboreal than A. afarensis. A study of the pedal bones of the Sterkfontein collection 

regarded many elements as deriving from an arboreal hominin and others from a 

primitive biped that would have incorporated an arboreal component into its locomotor 

repertoire (Deloison, 2003). Furthermore, the convexity of the lateral condyle of the A. 

africanus StW 514 proximal tibia would encourage greater mobility at the knee, and is 

possibly indicative of arboreality in this species (Berger and Tobias, 1995).  

 Arguments for arboreality in the hominin lineage extend into the early Pleistocene 

as well. The OH 7 hand is robust and may be evidence for strong arboreal grasping in 

Homo habilis (Stern and Susman, 1982). In addition to powerful hands, some have 

suggested that the H. habilis foot, based on the assumption that the OH 8 specimen 

belongs to this species, was equipped with a divergent great toe and other features related 

to arboreality (Oxnard and Lisowski, 1980; Kidd et al., 1996). The presence of a 

divergent toe in OH 8 has been refuted by more detailed studies (Harcourt-Smith, 2002; 

McHenry and Jones, 2006). In addition, Gebo and Schwartz (2006) regard the OH 8 

specimen as belonging not to H. habilis, but to Paranthropus boisei, and suggest that 

features of the OH 8 talus and the TM 1517 P. robustus talus may better adapt these 

animals for an arboreal environment. The limb proportions of two early Homo habilis 

skeletons (OH 62, KNM-ER 3735) have been reconstructed as possibly possessing 

relatively longer arms than earlier hominins (Leakey et al., 1989; Hartwig-Scherer and 

Martin, 1991; Haeusler and McHenry, 2007), though there is considerable error in 

reconstructing these limb lengths and the evidence for such an evolutionary reversal is 

not currently convincing (Reno et al., 2005). There is even the suggestion that some of 

these later Homo habilis postcranial remains, specifically KNM-ER 3735, may be better 
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adapted for an arboreal environment than the Hadar A. afarensis fossils (Haeusler and 

McHenry, 2007). Finally, Erik Trinkaus remarking on the 1.77 million year old 

postcranial fossils of Homo from Dmanisi noted that “If you’re a primate and you sleep 

on the ground at night, you do not wake up in the morning” (Owen, 2007).  

 Others have found the postcranial anatomy poorly adapted for modern ape-like 

climbing and have suggested the possibility that hominins may have climbed in a 

kinematically unique manner (Jungers, 1982; McHenry, 1991; MacLatchy, 1996; 

Sanders, 1998). Still others have dismissed the arguments for arboreality in early 

hominins, particularly A. afarensis, outright (Lovejoy, 1978; Latimer et al., 1987; 

Latimer and Lovejoy, 1989; Latimer and Lovejoy, 1990a; Latimer and Lovejoy, 1990b; 

Latimer, 1991; Lovejoy, 2005a; Lovejoy, 2005b; Lovejoy, 2007; Sayers and Lovejoy, 

2008). By evolving adaptations for bipedality, these studies argue, hominins sacrificed 

their ability to climb almost entirely. In this view, if hominins did climb, they performed 

as poorly as modern humans do today (Latimer et al., 1987). Latimer (1991) argued that 

modern chimpanzees occasionally die when they fall from trees, and thus if early 

hominins were climbing, natural selection would maintain adaptations for moving in an 

arboreal environment. Instead, Latimer (1991) argued that the morphology of the post-

cranial skeleton of early hominins was evolving in a direction away from the ape 

condition, and towards the human one. These evolutionary changes would have 

compromised their ability to safely operate in an arboreal environment, or at least 

changed the type of arboreal conditions in which hominins could navigate. Sayers and 

Lovejoy (2008) present a list of morphological traits found in the A. afarensis skeleton 

that would prevent much arboreal activity in early hominins. These include an elongated 
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lumbar region of the vertebral column, which Lovejoy (2005) regards as “antithetical” to 

ape-like arboreality because a critical adaptation for vertical climbing or bridging in apes 

is a short, stiff lumbar region (Keith, 1923; Cartmill and Milton, 1977; Jungers, 1984). In 

the lower limb, the metatarsophalangeal joints are decidedly human-like in their 

orientation, and though the phalanges are more curved than modern humans, they are 

short and straight compared to modern chimpanzee phalanges (Latimer and Lovejoy, 

1990). The talocrural joint (discussed more below) and the calcaneus have evolved 

morphologies related to obligate bipedality at the expense of adaptations for climbing 

(Latimer et al., 1987; Latimer and Lovejoy, 1990). Latimer and Lovejoy (1990) also 

provided a convincing morphological argument that A. afarensis had an adducted hallux 

(contra Hunt, 1994, Hunt, 1998; Harcourt-Smith, 2002; Harcourt-Smith and Aiello, 

2004). In fact, Lovejoy (1978, 2005) has suggested that australopiths may have been 

more adept bipeds than modern humans, with a more efficient abductor mechanism at the 

hip joint. The differences found between the australopithecine postcranial anatomy and 

the modern human skeleton is hypothesized to be related to differences in neonatal brain 

size and thus obstetric constraints (Lovejoy, 1978; Lovejoy, 2005).    

 This study adds to the current debate about vertical climbing in our hominin 

ancestors by augmenting the talocrural joint study by Latimer et al. (1987) to include all 

hominin distal tibia and tali and to test adaptations for climbing in the non-human 

hominoid and hominin talocrural joint using new kinematic data of vertical climbing in 

wild chimpanzees (Chapter 2). Functional predictions of skeletal differences in African 

apes and in humans are based on kinematic data of climbing in wild chimpanzees, 

cadaver studies, and kinetic work.  
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Vertically climbing apes and some atelines place their foot in positions of 

abduction, extreme dorsiflexion (Lewis, 1980; Chapter 2), and load the medial side of 

their foot (Wood-Jones, 1916; Morton, 1922; Vançata, 1985; Langdon, 1986; 

Wunderlich, 1999) as a result of foot inversion. The ability to achieve these joint 

positions in addition to loading of the joint surface at these times yields specific 

predictions regarding the morphology of the talocrural joint in primates that vertically 

climb. It is therefore predicted that vertically climbing apes possess skeletal correlates of 

foot mobility, and particularly the capacity to achieve extreme dorsiflexion, abduction, 

and inversion at the ankle. These are discussed in more detail in the material and methods 

sections.  

Studies on human cadavers have found that during dorsiflexion, the contact point 

between the tibia and the talus shifts anteriorly (Driscoll et al., 1994; Corazza et al., 

2005). Vertically climbing primates utilize positions of extreme foot dorsiflexion during 

climbing bouts, and therefore it is hypothesized that vertically climbing primates will 

produce a loading environment at the talocrural joint with high anterior forces. Because 

stress is equal to force divided by a given surface area, increased bone in the anterior 

aspect of the talocrural joint would help reduce the pressure in this region despite the 

high forces being incurred. Thus, it is predicted that vertically climbing primates will 

have broad anterior aspects of the talocrural joint.  

Inversion at the talocrural joint in the human ankle shifts the contact point 

medially on the articular surface and onto the medial malleolus (Calhoun et al., 1994; 

Kura et al., 1998). Detailed kinetic work on the primate foot demonstrated that the force 

on the foot shifts medially in vertically climbing chimpanzees whereas it remains in a 
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lateral position in cercopithecoids (Wunderlich, 1999). It is therefore hypothesized that 

vertically climbing apes will produce a loading environment at the talocrural joint with 

high medial forces. Again, because pressure is equal to force divided by a given surface 

area, increased bone in the medial aspect of the talocrural joint would help reduce the 

pressure in this region despite the high forces being incurred. Thus, it is predicted that 

vertically climbing primates will have more robust medial malleoli.  

Given these data from the orthopaedic and primate literature, it is possible to 

address two questions about the ankle anatomy of extinct hominins: 1) Based on the 

morphology of the distal tibia and talus, did fossil hominins have the range of motion 

necessary to achieve the joint positions observed in vertically climbing wild 

chimpanzees? If so, 2) based on the distribution of bone in the distal tibia and talus, did 

fossil hominins load their talocrural joint in a position of dorsiflexion, inversion, and 

abduction? 

 

Materials and Methods 

 The right distal tibia and talus of adult wild-shot African apes (Pan troglodytes, 

Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla beringei) were studied at the 

Cleveland Museum of Natural History, Harvard Museum of Comparative Zoology, 

American Museum of Natural History (New York), National Museum of Natural History 

(Washington D.C.), Peabody Museum (Yale), and Field Museum (Chicago). The 

numbers of tibia and tali, and the sexes of the specimens are listed in Tables 4.1 and 4.2. 

The human tali were from the 9th-12th century PaleoIndian Libben population housed at 

Kent State University (Lovejoy et al., 1977) and the Hamann-Todd collection at the  
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Table 4.1. Extant tibiae measured in this study. 
Species Male Female Sex 

unknown 
Total 

Homo sapiens 25 34 77 136 
Pan 
troglodytes 

18 20 10 48 

Pan paniscus 2 1 1 4 
Gorilla 
gorilla gorilla 

23 19 2 44 

Gorilla 
gorilla 
beringei 

15 6 1 22 

 
Table 4.2. Extant tali measured in this study. 
Species Male Female Sex 

unknown 
Total 

Homo sapiens 13 21 11 45 
Pan 
troglodytes 

17 20 9 46 

Pan paniscus 2 1 1 4 
Gorilla 
gorilla gorilla 

23 19 3 45 

Gorilla 
gorilla 
beringei 

10 3 0 13 

 

Cleveland Museum of Natural History. The human tibia were from the 9th-12th century 

PaleoIndian Libben population housed at Kent State University (Lovejoy et al., 1977), 

the Hamann-Todd collection at the Cleveland Museum of Natural History, and an 

unprovenienced sample of human tibia from the University of Michigan Department of 

Anthropology. For all measures, the three populations were first treated as separate 

groups and only when they did not statistically differ for any measure were the results 

combined.  

Fossil hominin tibia and tali (Table 4.3) were studied at the Transvaal Museum in 

Pretoria, South Africa, the Department of Anatomy at the University of Witwatersrand in 

Johannesburg, South Africa, the Kenya National Museum in Nairobi, and the Tanzania  
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Table 4.3. Fossil hominin tali and tibiae measured in this study.  
Accession 
number 

Element Geological 
age 

Taxon Talocrural angle 
(˚) 

KNM-KP 
29285 

Tibia 4.120 Australopithecus 
anamensis 

93.1 

A.L. 333-6 Tibia 3.21 A. afarensis 91.2 
A.L. 333-7 Tibia 3.21 A. afarensis 90.0 
A.L. 288-1  Talus 3.181 A. afarensis 90.3 
A.L. 288-1  Tibia 3.181 A. afarensis 91.2 
StW 181 Tibia 2.6-2.82 A. africanus? 93.7 (est.) 
StW 347 Talus 2.6-2.82 A. africanus? 8 Damaged 
StW 358 Tibia 2.6-2.82 A. africanus? 8, 20 94.7 
StW 363 Talus 2.6-2.82 A. africanus? 23 91.6 
StW 389 Tibia 2.6-2.82 A. africanus? 8, 20 94.3 
StW 88 Talus 2.6-2.82 Homo habilis? 6,7, 20 

A. africanus?  
90.4 

StW 514b Tibia 2.6-2.82 A. africanus? 8, 18 90.8 
StW 486 Talus 2.6-2.82 A. africanus? 8  93.7 
StW 102 Talus 2.4-2.82 H. habilis? 7, 20 

A. africanus? 8 
91.9 

Omo 323-76-
898 

Talus 2.23 Homo? 9,10  94.5 

TM 1517 Talus 1.9-2.04 Paranthropus robustus? 
20  

91.1 

SKX 42695 Talus 1.5-2.05 P. robustus? 5 
Homo? 5 

Damaged 

KNM-ER 1481 Tibia 1.93 H. habilis? 20, 21 

H. erectus 22 
90.5 

KNM-ER 1500 Tibia 1.93 P. boisei? 15, 20 87.4 
KNM-ER 2596 Tibia 1.93 Hominin 25  

Cercopithecoid? 
107.0 

KNM-ER 1476 Talus 1.883 P. boisei? 10, 11  93.7 
OH 8 Talus 1.85 H.  habilis? 12, 13, 20 

P. boisei? 10, 14, 15   
92.0 

OH 35 Tibia 1.85 H. habilis? 13, 20 

P. boisei?  
89.0 

KNM-ER 813 Talus 1.853 Homo 10, 14 93.2 
KNM-ER 1464 Talus 1.73 P. boisei? 15, 20   

Homo?   
93.5 

StW 567 Tibia 1.4-1.72 Homo 2, 24 91.2 
KNM-ER 5428 Talus 1.63 H. erectus 19, 26  92.6 
KNM-ER 803 Talus 1.533 H. erectus 16, 19, 20, 26 Damaged 
KNM-WT 
15000 

Tibia 1.517 H. erectus 17 86.7 

*Based on human-regression equations from McHenry (1992).   
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0Leakey et al., 1998; 1Walter et al., 1994; 2Kuman and Clarke, 2000; Deloison, 2003; 
Pickering et al., 2004; 3Feibel et al., 1989; 4McKee, 1995; 5Susman et al., 2001; 6Clarke, 
1985; 7Christie, 1990; 8McHenry and Berger, 1998; 9Deloison, 1997; 10Gebo and 
Schwartz, 2006; 11Leakey, 1973; 12Leakey et al., 1964; 13Susman and Stern, 1982; 
14Wood, 1974; 15Grausz et al., 1988; 16Day and Leakey, 1974; 17Walker and Leakey, 
1993; 18Berger and Tobias, 1996; 19Antón, 2003; 20McHenry, 1994; 21Trinkaus, 1984; 
22Kennedy, 1983; 23Fisk and Macho, 1992; 24Curnoe and Tobias, 2006; 25Leakey and 
Walker, 1985; 26Walker, 1994. 
 

National Museum and House of Culture in Dar es Salaam. High quality research casts of 

the Hadar A. afarensis tibiae and tali were measured at the Cleveland Museum of Natural 

History and the University of Michigan Department of Anthropology. All linear 

measurements on fossil and extant tibiae and tali were taken with digital calipers.  

 The ankle morphology of African apes and humans was quantified to assess 

features related to the three types of movement that typified vertically climbing wild 

chimpanzees (Chapter 2): dorsiflexion, abduction, and inversion.  

 

I. Dorsiflexion 

 Four separate analyses were undertaken on the tibia and talus to assess both the 

capacity for extreme dorsiflexion, and to test whether loading occurred in the joint during 

periods of extreme dorsiflexion. These are described in detail in Chapter 3 and will not be 

repeated here, except to note on which fossils these measures could be accurately taken.  

 DISTAL TIBIA 

1.) The Mosimann size-standardized shape analysis of the distal tibia allows the 

following question to be addressed: given an equal amount of bone, where in the joint 

does the primate distribute this limited resource? The following fossils were complete 

enough for measures to be taken accurately: KNM-KP 29285, A.L. 333-6, A.L. 288-1, 
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StW 358, StW 389, KNM-ER 1481, KNM-ER 1500, KNM-ER 2596, OH 35, StW 567, 

and KNM-WT 15000. The anterolateral corner of A.L. 333-7 was damaged and thus the 

mediolateral length of the anterior surface and the anteroposterior width of the lateral 

aspect of the bone were estimated. The anterior aspect of StW 181 and the posterior 

region of StW 514 were both sheared away and thus the dimensions of these tibiae could 

not be assessed with any accuracy.  

 In addition, a non-stepwise discriminant function analysis was performed on the 

six size-adjusted measures using SPSS 14.0. All of the fossils were entered as separate 

groups. This provided a test of the hypothesis that the measures predicted to be 

biomechanically relevant were in fact the ones that best discriminate the distal tibia of 

humans and African apes.  

 TALUS 

 2.) Wedging of the talus was assessed as described in Chapter 3. The following 

fossil tali were complete enough for this measure to be taken: A.L. 288-1, StW 88, StW 

363, Omo 323-76-898, KNM-ER 1476, KNM-ER 813, KNM-ER 1464, and KNM-ER 

5428. There is damage to the posterolateral corner of the talar trochlea in OH 8, though 

this width could be reasonably estimated. Likewise, the posterior edge is not preserved on 

TM 1517 and thus these values should be considered minimums. The damage is too 

severe on StW 102, StW 347, StW 486, and SKX 42695 for an accurate measure of this 

angle to be calculated.    

 TALOCRURAL MOBILITY 

3.) The mobility of the talocrural joint was measured as a function of the depth of 

the distal tibial surface following the protocol described in Chapter 3. In addition to the 
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depth measurement, with the images in lateral view, the posterior or anterior “tilt” of the 

distal tibia relative to the long axis of the shaft was also measured on all tibiae. This angle 

was taken by drawing a straight line through the most inferior aspects of the distal tibial 

(as described above) and measuring the angle that this line forms with the long axis of the 

tibia, following the protocol of Stern and Susman (1983). This measure has been 

previously used to argue that A.L. 288-1 had an ape-like plantarflexed set to its talocrural 

joint (Susman and Stern, 1983; Susman et al., 1984) though others have argued instead 

that this measure is quite variable and holds little functional significance (Latimer et al., 

1987). The depth of the tibial surface and the tilt of the tibial axis in the sagittal plane 

were measured on the following fossil tibia: KNM-KP 29285, A.L 288-1, A.L. 333-6, 

A.L. 333-7, StW 358, StW 389, KNM-ER 1500, KNM-ER 1481, KNM-ER 2596, StW 

567, and KNM-WT 15000. The anterior and/or posterior rims were too badly damaged 

on StW 181, StW 514 to accurately assess the depth of the tibial articular surface and the 

tilt of the joint surface in the sagittal plane. Also, damage inflicted perhaps by a 

crocodilian (Njau and Blumenschine, 2007) to the anterior rim of the OH 35 tibia makes 

it difficult to get a precise measurement of the tibial depth, though a minimum value 

could be estimated.   

4.) The mobility of the talocrural joint was also measured as a ratio of the amount 

of bone in the anteroposterior aspect of the distal tibial metaphysis versus the amount of 

bone in the mediolateral dimension following the protocol described in Chapter 3. The 

metaphyseal region was preserved well enough for this measurement to be taken with 

accuracy on the following hominin distal tibia: KNM-KP 29285, A.L. 288-1, A.L. 333-6, 

A.L.333-7, StW 358, StW 389, KNM-ER 1500, KNM-ER 1481, KNM-ER 2596, OH 35, 
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Figure 4.1. Models illustrating the effect of tibial depth on dorsiflexion. 

 
Figure 4.1. Models illustrating how the depth of the tibial surface can limit dorsiflexion in 
the ankle. The circles represent the talus, vertical rectangles represent the long axis of the 
tibia and gray horizontal lines the distal tibia. The ape model on the left shows a flat tibial 
surface dorsiflexing 30˚ over a curved talar surface. The rim of the distal tibia does not 
reach the black line drawn through the talus representing the talar neck. However, a 
curved surface, the same exact length as the flat one, reaches the black line upon 30˚ of 
dorsiflexion. These models illustrate how the flatness of the tibial articular surface may 
be correlated with an increased range of dorsiflexion. 
 

and KNM-WT 15000.  

 

II. Abduction 

 The apical angle of the talus is hypothesized to be proportional to the degree of 

foot abduction, with a high apical angle resulting in a greater degree of abduction than a 

low apical angle. The methods employed to calculate the apical angle are described in 

detail in Chapter 3. As with the measure of talar wedging, the tali complete enough to 
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take this measure of talar abduction were: A.L. 288-1, StW 88, StW 363, Omo 323-76-

898, KNM-ER 1476, KNM-ER 813, KNM-ER 1464, and KNM-ER 5428. TM 1517 

should be considered a minimum as there is damage to the posterior aspect of the bone.  

The degree of foot abduction possible in the ankle can also be assessed as the 

ratio of distance traveled by the tibia over the talus on the lateral side of the joint to the 

distance traveled by the tibia over the talus on the medial side of the joint. The methods 

employed to calculate the degree of abduction on an associated tibia and talus is 

described in Chapter 3.  

Applications of this approach to the hominin fossil record necessitate the presence 

of associated tibia and tali. These data are available for the A. afarensis skeleton A.L. 

288-1 (Johanson et al., 1982), and potentially for the OH 8/OH 35 talocrural joint (Stern 

and Susman, 1982 though see Aiello et al., 1998; Wood et al., 1998). Additionally, the A. 

africanus tibia StW 358 has been hypothesized to articulate with the StW 363 talus (Fisk 

and Macho, 1992) or the StW 347 talus (Deloison, 2003). Although the StW 358 tibia 

morphologically fits well with either of the two tali and all share the same patina, it is 

argued here to belong with StW 363 (Figure 4.2). The two were found in adjacent grids 

(R/43 and Q/43 respectively) and at the same depth of 13’6”-14’6”. Although the StW 

347 talus was also found in an adjacent grid (P/43), it was at a shallower depth of 11’2”-

12’3”. Furthermore, there is damage to the inferolateral aspect of the anterior aspect of 

the StW 358 tibia and what appears to be corresponding damage to the inferior aspect of 

the lateral talar body and malleolar facet on the StW 363 talus.     
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Figure 4.2. Ankle of Australopithecus africanus.  

 
Figure 4.2. Potentially associated tibia (StW 358) and talus (StW 363) of 
Australopithecus africanus from 2.6-2.8 mya Member 4 deposits in the Sterkfontein cave, 
South Africa, in anterior view (left) and medial view (right).  
 

III. Inversion 

 An inverted set to the talocrural joint is a function of the angle that the long axis 

of the tibia forms with the articular surface of the ankle (Latimer et al., 1987). This was 

assessed in two different ways. The angle that the long axis of the tibia forms with the 

distal articular surface of the tibia was measured using a carpenter’s contour guide on 

wild-shot chimpanzees (n=31), lowland gorillas (n=29), and on modern human tibia 

(n=28) from the Hamman-Todd Collection at the Cleveland Museum of Natural History. 

The tibia were pressed into the carpenter’s contour guide with care taken to be sure that 

the contour pins were parallel to the long axis of the tibial shaft. The impression of the 

articular surface made on the contour guide was then laid flat, and photographed with a 

Nikon D100 digital camera. The images were imported into the program Image J and the 
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angle formed between the plane formed by the contour pins and the long axis of the tibia 

as inferred by the unmoved straight contour pins was measured.  

 This angle formed between the long axis of the tibia and the ankle joint surface 

was measured in this same manner on casts of the following hominin tibia: KNM-KP 

29285, A.L. 288-1, A.L. 333-6, A.L. 333-7, KNM-ER 1481, KNM-ER 1500, KNM-ER 

2596, and OH 35. Two other methods were employed to measure this angle on the tibia 

as well. Plaster casts of the above hominin tibia were produced and sectioned in the 

coronal plane with a handsaw. The angle formed between the tibial axis and the articular 

surface was then measured directly with a protractor. This approach allowed the results of 

this study to be compared directly to the results of Latimer et al. (1987) who employed a 

similar cast sectioning method to measure the angle that the long axis of the tibia forms 

with the ankle. The results from the carpenter’s contour guide method were within 1˚ of 

the angles measured on sectioned casts. In addition, the following original fossil tibia 

were studied: StW 181, StW 358, StW 389, StW 514, StW 567, KNM-KP 29285, KNM-

ER 1481, KNM-ER 1500, KNM-ER 2596, OH 35, and KNM-WT 15000 (Table 4.3). 

These fossils were scanned with a Next Engine portable 3-D desktop laser scanner. The 

specimens were scanned at the maximum resolution possible of 0.1 mm. The 3-D models 

were imported into the program ScanStudio and using the crop tool, the bones were 

digitally sectioned in the coronal plane. Images of the digitally sectioned fossils were 

captured with the program Jing, and imported into Image J, where the angle formed 

between the long axis of the tibia and the articular joint surface was measured with the 

angle tool as described above. Measured angles were within 1˚ of one another for 

specimens in which all three methods were employed (KNM-KP 29285, KNM-ER 1481, 
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KNM-ER 1500, and KNM-ER 2596) allowing results from the three methods to be used 

interchangeably.  

 The set of the tibia on the talus was estimated using isolated tali as well (Figure 

4.3). This was possible because the angle formed between the long axis of the tibia and 

the axis of rotation of the talocrural joint is conserved in humans and African apes, 

approximately 80˚ (Latimer et al., 1987).  Because the angles of a triangle sum to 180˚, if 

80˚ is conserved between humans and African apes, then there remains 100˚ between the 

remaining two joint angles to differentiate the two primate groups. Because humans have 

a perpendicularly aligned tibia relative to the ankle (an angle of ~90˚), the angle formed 

between the articular surface of the ankle and the axis of rotation of the joint is roughly 

10˚; whereas a more obliquely angled tibia over the talus (~75˚), would necessarily mean 

a higher joint angle (~25˚) between the axis of rotation and the ankle joint surface in the 

African apes. Because the axis of rotation of the talocrural joint runs through the tips of 

the malleoli (Inman, 1976; Latimer et al., 1987), this axis can be estimated on isolated tali 

as the line that runs between the most inferior aspect of the articular surfaces for the 

medial and lateral malleoli. The angle that the axis of rotation forms with the articular 

surface of the talocrural joint can then be determined by measuring the angle between this 

line connecting the inferior malleolar facets and the superior surface of the talus. This 

angle was measured on isolated tali from Homo sapiens (n=45), Pan troglodytes (n=51), 

Gorilla gorilla gorilla (n=45), and Gorilla gorilla beringei (n=13). The tali were 

positioned in distal view and photographed with a Nikon D100 digital camera. The 

images were imported into the program Image J, and the angle between the most inferior 

extent of the facets for the medial and lateral malleoli and the superior surface of the talus  
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Figure 4.3. Geometry of the hominoid ankle. 

 
Figure 4.3. Lines drawn through the long axis of the tibia, the talocrural axis, and the 
plane of the talocrural joint form a triangle. The angle formed between the long axis of 
the tibia and the axis of rotation of the ankle joint is conserved between humans and 
African apes (Latimer et al., 1987). Thus a measure of either of the other angles can be 
used to calculate the third angle. The angle formed between the axis of rotation of the 
ankle and the plane of the talocrural joint, even if taken on isolated tali, can be used to 
calculate the angle that the long axis of the tibia formed with the articular surface of the 
tibia. Reproduced with permission from Latimer et al. (1987) and reprinted with 
permission from Wiley-Liss, Inc.Wiley Publishing Inc., a subsidiary of John Wiley & 
Sons, Inc. 
 

was measured with the angle tool. Twenty randomly selected specimens were measured a 

second time a month after the original measurement to assess repeatability. The average 

difference between the two measures was 1˚ ± 0.5˚ with a maximum difference between 

two measures of 1.93˚.  

 This angle was also measured on the following original fossil tali: StW 88, StW 

102, StW 363, StW 486, OH 8, TM 1517, KNM-ER 1476, KNM-ER 1464, KNM-ER 
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813, and KNM-ER 5428. This angle was taken on high quality research casts of A.L. 

288-1 and Omo 323-76-898. The original fossil hominin tali StW 347, SKX 42695, and 

KNM-ER 803 were too badly damaged along the medial or lateral aspect of the talar 

body to accurately take this angle.  

A measure of the relative thickness of the medial malleolus and the ratio of the 

medial and lateral radii of curvature on the primate talus follows the protocol described in 

detail in Chapter 3. The medial malleolus was complete enough for the thickness ratio to 

be calculated on the following hominin fossils: KNM-KP 29285, A.L. 333-6, A.L. 333-7, 

A.L. 288-1, StW 358, StW 515, KNM-ER 1500, KNM-ER 1481, KNM-ER 2596, StW 

567, and KNM-WT 15000. Although the malleolus is broken in OH 35, enough of the 

malleolar junction with the tibial articular surface is present that mediolateral thickness 

and anteroposterior width can be estimated. The relative radii of curvature on the hominin 

talus could be assessed with accuracy on those tali with relatively complete medial and 

lateral trochlear rims: A.L. 288-1, StW 88, StW 363, StW 486, Omo 323-76-898, TM 

1517, KNM-ER 1476, OH 8, KNM-ER 813, KNM-ER 1464. and KNM-ER 5428. 

Significance was assessed for all measures in this study using Fisher’s least 

squares difference (LSD) test for planned comparisons, after first performing a one-way 

analysis of variance (ANOVA) test. When Gorilla and Pan were treated collectively, 

significant differences between humans and the African apes were assessed using a t-test.  
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Results 

 

Dorsiflexion 

 1.) The size standardized shape of the distal tibia is clearly different between 

humans and African apes (Table 4.4; Figure 4.4). Humans have a statistically equivalent 

anteroposterior length at the midpoint of the distal tibia to all of the African apes (Gorilla 

p=0.30, Pan p=0.14), and a statistically similar mediolateral width at the midpoint of the 

tibial articular facet (Gorilla p=0.043; Pan p=0.74). These results imply that 

anteroposterior and mediolateral measurements taken at the midpoint of the tibial 

articular surface do not distinguish African apes and humans and differences instead exist 

at the edges of the talocrural joint. The anteroposterior length on the medial side is 

significantly longer in African apes than in humans (t=7.97, p<0.0001). The mediolateral 

width of the anterior aspect of the distal tibia is dramatically longer in African apes than 

in humans (t=26.8, p<0.0001). In contrast, humans have an anteroposteriorly longer 

lateral aspect of the distal tibia than African apes (t=16.97, p<0.0001), and have a broader 

mediolateral width of the posterior aspect of the bone as well (t=15.03, p<0.0001). The 

two features that differentiate ape and human distal tibia most clearly are the broader 

mediolateral width of the anterior aspect of the distal tibia in the apes, and an elongated 

anteroposterior width of the lateral aspect of the distal tibia in humans (top right corner of 

Figure 4.4). When the 12 complete fossil hominin distal tibia are graphed with humans 

and African apes, it is clear that they are morphologically similar to modern humans, and 

conspicuously lack the broad anterior aspect of the distal tibia that is characteristic of 

vertically climbing primates (Chapter 3). The earliest hominin tibia from A. anamensis  
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Table 4.4. Size-standardized dimensions of distal tibia in humans, African apes, and 
fossil hominins. 
Species/specimen AP 

lateral 
AP 
midpoint 

AP 
medial 

ML 
anterior 

ML 
midpoint 

ML 
posterior 

African ape 0.92 ± 
0.06 

1.00 ± 
0.06 

0.92 ± 
0.07 

1.36 ± 
0.07 

1.06 ± 
0.06 

0.83 ± 
0.07 

Human 1.04 ± 
0.05 

0.99 ± 
0.05 

0.87 ± 
0.05 

1.17 ± 
0.05 

1.04 ± 
0.04 

0.94 ± 
0.05 

KNM-KP 29285 1.04 0.97 0.82 1.16 1.09 0.96 
A.L. 333-6 1.00 1.00 0.88 1.12 1.04 0.97 
A.L. 333-7 1.01 0.99 0.84 1.17 1.05 0.96 
A.L. 288-1 1.10 0.97 0.82 1.17 0.97 1.01 
StW 358 1.07 1.02 0.90 1.10 1.01 0.92 
StW 389 1.03 0.98 0.89 1.11 1.03 0.97 
KNM-ER 1481 0.97 1.01 0.89 1.15 1.08 0.93 
KNM-ER 1500 1.17 1.05 0.83 1.20 0.97 0.85 
KNM-ER 2596 1.04 1.06 0.92 1.21 1.01 0.81 
OH 35 1.10 0.89 0.90 1.18 1.08 0.90 
StW 567 1.04 0.98 0.89 1.11 1.03 0.97 
KNM-WT 15000 1.12 1.03 0.90 1.09 0.97 0.92 
 
 
(KNM-KP 29285), A. afarensis (A.L. 288-1, A.L. 333-6, and A.L. 333-7), and A. 

africanus (StW 358, StW 389) have a shape of the distal tibia distinct from the African 

ape shape, and similar to that found in modern humans (Figure 4.5). All six of the tibiae 

were within two standard deviations of the modern human mean for all six measures. 

They were unlike African apes in having an elongated lateral side to the distal tibia, and 

in having a shortened anterior aspect to the articular surface. Similarly, the six Plio-

Pleistocene tibia, KNM-ER 1481, KNM-ER 1500, KNM-ER 2596, OH 35, StW 567, and 

KNM-WT 15000 were all unlike the African ape distal tibia in lacking the broad anterior 

aspect to the joint surface (Figure 4.6). KNM-WT 15000, KNM-ER 1481, StW 567, and 

OH 35 were within two standard deviations of the human mean for all measures. 

However, there was more variation in these later tibiae, with KNM-ER 1500, and KNM-

ER 2596 being the most distinct from the modern human form. Both of these specimens  
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Figure 4.4. Size-standardized dimensions of African ape and human distal tibia. 
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Figure 4.4. Size standardized representation of the shape of the distal tibia in humans 
(white diamond), chimpanzees (grey square), lowland gorillas (black x) and mountain 
gorillas (gray triangle). Plotted are the mean values and the bars represent one standard 
deviation. Anterior is towards the top, lateral towards the right. Humans differ from the 
African apes in having broader posterior and longer lateral aspects to the distal tibia while 
African apes have broader anterior and longer medial sides. Note that measures taken at 
the midpoints of the bone would not discriminate humans from African apes. 
 
have relatively shortened posterior aspects to the distal tibia and KNM-ER 1500 in 

particular has a lengthened lateral aspect relative to what is found in modern humans. 

None of the tibiae differ from humans in having African ape-like broader anterior or 

medial aspects of the joint surface though.   
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Figure 4.5. Size-standardized shape of articular surface of fossil hominin distal tibia (4.2-
2.6 mya). 
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Figure 4.5. Size standardized representation of the shape of the distal tibia in humans 
(white diamond), African apes (black square), and Pliocene hominins (colors). Plotted are 
the mean values and the bars represent one standard deviation. Anterior is towards the 
top, posterior on the bottom, lateral towards the right, and medial to the left. The 
hominins all lack the relatively broad anterior aspect of the distal tibia typical of African 
apes and are all human-like in the geometry of the articular surface of the ankle.   
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Figure 4.6. Size-standardized shape of articular surface of fossil hominin distal tibia (2.0-
1.5 mya). 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Posterior

M
ed

ia
l

Human African ape KNM-ER 1500 KNM-ER 1481
KNM-ER 2596 OH 35 StW 567 KNM-WT 15000

 
Figure 4.6. Size standardized representation of the shape of the distal tibia in humans 
(white diamond), African apes (black square), and Pleistocene hominins (colors). Plotted 
are the mean values and the bars represent one standard deviation. Anterior is towards the 
top, posterior on the bottom, lateral towards the right, and medial to the left. The 
hominins all lack the relatively broad anterior aspect of the distal tibia typical of African 
apes.  
 
 

 When these variables are entered into a discriminant function analysis, humans 

and African apes can be clearly differentiated, especially along the first function which 

accounts for 94.8% of the variation (Figure 4.7). Separation on this axis is being driven 

primarily by the mediolateral width of the anterior aspect of the distal tibia (-0.855), the 

anteroposterior length of the lateral side of the bone (+0.531), and the mediolateral width 

of the posterior aspect of the bone (+0.492). All of the fossil hominins entered into the 

discriminant function analysis clustered with modern humans, with the possible 

exception of KNM-ER 2596, which was predicted by the discriminant function to group 

with modern humans, but the hypothesis that it belonged with the chimpanzee group  
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Figure 4.7. Disciminant function analysis of distal tibial shape in fossil hominins. 

5.02.50.0-2.5-5.0

Function 1 (94.8 % of variance)

6

4

2

0

-2

Fu
nc

tio
n 

2 
(4

.5
%

 o
f v

ar
ia

nc
e)

Group Centroid
Hominins
Homo sapiens
Pan sp. 
Gorilla sp.

Species

 
Figure 4.7. Discriminant function analysis on the size-standardized measures of the 
articular surface of the distal tibia separate the African apes (blue and green) from 
modern humans (black). Hominins (red stars) fall within the human distribution, though 
KNM-ER 2596 is the specimen nearest to the ape distribution. Function 1, which 
explains most of the variance is driven primarily by the anterior mediolateral width of the 
tibial articular surface (-0.855) and the lateral anteroposterior length of the tibial articular 
surface (+0.531). 
 
 
could not be refuted (p=0.286). KNM-ER 2596 differs mostly from modern humans in 

having a shortened posterior width of the tibial surface. 

 The results both from the univariate analysis and the discriminant function 

analysis make it clear that two features best differentiate African ape and human tibia:  

African apes have broad anterior aspects of the distal tibia, while modern humans have 

long lateral widths to the bone. When just these two size-standardized dimensions are 

plotted, all twelve hominin tibiae for which these measures are known cluster tightly  
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Figure 4.8. Shape of the articular surface of the distal tibia in fossil hominins 
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Figure 4.8. Ape distal tibiae have relatively broad anterior surfaces while human distal 
tibiae have relatively long lateral aspects. When just these two size-standardized 
measures are plotted, they clearly separate human tibiae (white diamond) from ape tibiae 
(black square). Plotted are mean values and the bars represent one standard deviation. All 
of the fossil hominins cluster with modern humans.  
 
around the human distribution (Figure 4.8). Importantly, for those specimens that deviate 

from the human range (i.e. KNM-ER 1500), they do so in the direction away from the 

morphospace occupied by the African apes, and KNM-ER 2596 is within a standard 

deviation of the human mean for both of these critical measures.  

 2.) The wedged shape of the superior surface of the talus was measured by 

modeling the superior surface of the talus as a cone and taking the angle formed between 

lateral edge of the talus and a line starting at the most posterolateral corner of the talus 

and drawn parallel to the medial edge of the talus. This angle is significantly different 

between humans and the African apes (Figure 4.9), although care should be taken in 

interpreting this result because this feature did not identify vertical climbing per se in a 

broader comparative study (Chapter 3). Humans have a weakly wedged talus with an  
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Figure 4.9. Degree of wedging in the hominin talus.  

Figure 4.9. Boxplots of the talar wedging angle show the median (black bar), interquartile 
ranges (blue/gray), and overall ranges of the data. Outliers defined as greater than 1.5 
times the interquartile range are shown as circles. Ape tali have a higher wedging angle, 
reflecting a broad anterior aspect of the bone. Humans have more even sided lateral and 
medial talar rims and thus have a more square-shaped talar surface and a lower angle. All 
of the hominins studied fall within the range of modern humans for this measure.  
 

angle of 10.0˚ ± 3.0˚. This angle is a significantly larger in chimpanzees (p<0.001), and in 

gorillas (p<0.001), which have statistically similar angles (p=0.13). All of the hominin 

tali complete enough for this measurement to be made are within one standard deviation 

of the human mean except TM 1517 and StW 363. These two tali are within two standard 

deviations of the human mean and within the modern human range, though they have a 

value closer to the chimpanzee mean for this measure. 
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 3.) Humans have a significantly deeper articular surface of the distal tibia than 

what is found in the ankle of African apes (Figure 4.10). Again though, this feature did 

not discriminate vertical climbing primates from other locomotor modes in a wider 

comparative study (Chapter 3). The human tibial surface has a depth that is 16.1% ± 

1.7% of the anteroposterior width of the articular surface. African apes have a flatter 

tibial surface, only 12.3% ± 2.5% of the tibial width. African apes are statistically 

equivalent to one another for this measure (Gorilla gorilla beringei and Gorilla gorilla 

gorilla (p=0.12); Gorilla gorilla beringei and Pan (p=0.24); Gorilla gorilla gorilla and 

Pan (p=0.58). These difference between the means of each of the African apes and 

modern humans are statistically significant (p<0.001).  The anteroposteriorly flatter tibia 

of African apes is hypothesized to permit additional range of motion of the tibia over the 

talus, allowing for the increased dorsiflexion required during vertical climbing. All of the 

fossil hominin tibia are human-like in having a deeply concave tibial surface, except for 

OH 35 and KNM-ER 2596. The anterior surface of OH 35 is damaged and thus the 

inferior extend of the anterior aspect of this tibia could only be estimated. What is 

presented is a minimum value that would probably have been in the human range in the 

intact specimen. However, the KNM-ER 2596 distal tibia is striking in its 

anteroposteriorly flat tibial surface, outside of the range in modern humans.  

4.) The dimensions of the tibial metaphysis differed significantly between modern 

humans and African apes (Figure 4.11). African apes have a more rectangular shape to 

the distal tibial metaphysis with the anterolateral length representing only 67.2% ± 5.6% 

the value of the mediolateral width of tibial metaphysis. In contrast, humans have a more 

 
 



 134

Figure 4.10. Depth of tibial articular surface in fossil hominins. 

 
Figure 4.10. The depth of the tibial surface (H) relative to the anteroposterior width of the 
articular facet (L) distinguishes the flat tibia of African apes from the concave tibia of 
modern humans. Boxplots of the relative depth of the tibial surface show the median 
(black bar), interquartile ranges (blue/gray), and overall ranges of the data. Outliers 
defined as greater than 1.5 times the interquartile range are shown as circles. Most of the 
hominin tibiae fall within the range of modern humans except OH 35, which has damage 
to the anterior aspect of the bone and thus would have had a more concave surface than 
what is presented here, and KNM-ER 2596, which is quite flat.  
 
 

square-shaped bone with the anteroposterior length composing 82.2% ± 4.8% of the 

mediolateral width. Gorilla gorilla beringei and Pan are statistically equivalent (p=0.43), 

though Gorilla gorilla gorilla has a significantly wider metaphysis (p<0.001) that the 

other Africa apes. The difference between all of the African apes and humans for this 

measure is statistically significant (p<0.001). All of the hominin tibiae were distinctly  
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Figure 4.11. Shape of the metaphysis in the hominin distal tibia. 

 
Figure 4.11. The dimensions of the metaphysis of the distal tibia [(ML/AP) *100] differ 
between the square-shaped human tibiae and the rectangular-shaped African ape tibiae. 
Boxplots of the shape of the distal tibial metaphysis show the median (black bar), 
interquartile ranges (blue/gray), and overall ranges of the data. Outliers defined as greater 
than 1.5 times the interquartile range are shown as circles. All of the hominin tibiae are 
human-like for this measure.  
 

human-like for this measure and did not possess the mediolaterally wide distal tibia 

typical of African apes.  

 

Abduction 

 With the talus modeled as a cone, the degree of abduction can be estimated from 

isolated tali as the apical angle of the cone. The resultant measure is the amount of 

rotation that occurs when the tibia travels a farther distance over the lateral aspect of the  
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Figure 4.12. Apical angle of the hominin talus. 

 
Figure 4.12. With the talus modeled as a cone, the degree of tibial rotation and thus foot 
abduction can be estimated from isolated tali. Ape tali have much broader anterior and 
lateral sides which would encourage foot abduction; whereas the human foot experiences 
less abduction during dorsiflexion. Boxplots of the talar abduction angle (also referred to 
as the apical angle in the text) show the median (black bar), interquartile ranges 
(blue/gray), and overall ranges of the data. Outliers defined as greater than 1.5 times the 
interquartile range are shown as circles. All of the hominin tali studied fall within the 
range of modern humans.  
 

cone than the medial. However, this measure did not discriminate vertically climbing 

primates from others in a wider comparative study (Chapter 3). Nevertheless, the apical 

angle of 47.8˚ ± 6.2˚ in African apes is significantly greater than the 32.7˚ ± 4.5˚ found in 

modern human tali (t=18.46, p<0.0001), and humans have a more acute angle when 

compared to each of the African ape species individually (p<0.001). Gorilla gorilla 

beringei and Pan have statistically equivalent apical angles (p=0.40). All of the fossil 
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hominin tali strongly resemble modern humans in the geometry of the talar surface 

except TM 1517 and StW 363, which both fall between the human and African ape mean 

(Figure 4.12), within two standard deviations of both.  

 Adding the tibial dimensions to the talus gives a more accurate representation of 

the amount of rotation that occurs during dorsiflexion of the tibia over the talus. There 

was considerable variation within both the African apes and humans for this measure, 

though Gorilla gorilla beringei and Pan had statistically equivalent abduction angles 

(p=0.67). African apes collectively have a greater degree of lateral talar rotation under the 

tibia during dorsiflexion (7.5˚ ± 5.7˚) than do modern humans (-0.08˚ ± 3.4˚) (t=10.1, 

p<0.0001), and each African ape species is statistically distinct from modern humans 

(p<0.001). These data suggest that the human talocrural joint is primarily a hinge joint, 

with very little abduction or adduction occurring during dorsiflexion and plantarflexion. 

The impact of this morphology on vertical climbing per se is not clear as Pongo also 

possesses a hinge-like morphology. The tibia and talus of A.L. 288-1 falls near the 

human mean, as does the potentially associated tibia and talus from South African StW 

358 and StW 363 (Figure 4.13). The OH 8 and OH 35 bones have a geometry that would 

force the foot into adduction during dorsiflexion, opposite of what occurs in the African 

apes and outside of the modern human distribution. These data suggest that OH 8/OH 35 

was moving in a Pongo-like manner (Chapter 3) or more likely that these two bones are 

not from the same individual.  
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Figure 4.13. Maximum abduction possible in hominin ankle. 

 
Figure 4.13. By combining the lateral and medial arc lengths of both the tibia and the 
talus, it can be calculated that African apes have an ankle that permits more internal 
rotation of the tibia and thus more foot abduction during dorsiflexion than what usually 
occurs in the human ankle. Boxplots of the total angular abduction at the ankle show the 
median (black bar), interquartile ranges (blue/gray), and overall ranges of the data. 
Outliers defined as greater than 1.5 times the interquartile range are shown as circles. The 
fossil tibia and tali from A.L. 288-1 and StW 358/StW 363 are human like in limited 
abduction. The fossil pair OH 8/OH 35 likely does not derive from the same individual 
hominin.  
 

Inversion 

 The angle formed between the long axis of the tibia and the articular surface at the 

distal end of the bone is 91.1˚ ± 2.4˚ in humans, 102.6˚ ± 4.4˚ in chimpanzees, and 105.7˚ 

± 2.5˚ in gorillas (Figure 4.14). The difference between the angle in humans and the 

African apes is statistically significant (p<0.001). KNM-ER 2596 was the only purported 

hominin specimen to have an ape-like tibia oriented obliquely over the foot at 107.0˚  
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Figure 4.14. Angle formed between plane of ankle joint and long axis of tibia in 
hominins. 

 
Figure 4.14. Boxplots of the angle formed between the long axis of the tibia and the tibial 
plafond show the median (black bar), interquartile ranges (blue/gray), and overall ranges 
of the data. Outliers defined as greater than 1.5 times the interquartile range are shown as 
circles. The long axis of the tibia is perpendicular relative to the talar articular surface in 
humans and in all hominins except KNM-ER 2596, which shares with the African apes, 
and other non-human primates, an obliquely oriented joint surface.  Interpretations of the 
KNM-ER 2596 tibia are discussed further in the text. 
 
 (Figure 4.15). The A. anamensis tibia had a slight tilt to its articular surface of 93.1˚, and 

two A. africanus tibia also had a slight tilt of 94.7˚ and 94.3˚ for StW 358 and StW 389 

respectively, though these values are well within the modern range of variation. The A. 

africanus tibia StW 181 was too badly damaged to precisely measure the angle between 

the articular surface and the long axis of the tibial shaft, though it can be estimated to 

approximately 93.7˚ by assuming that the distolateral aspect of the tibia shares a 

conserved angle with chimpanzees and humans. All of the other hominin tibiae were  
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Figure 4.15. Digital cross-sections of fossil hominin distal tibiae. 
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Figure 4.15. Digital cross-sections of the tibiae of a chimpanzee (top left), human (top 
right), Pliocene East African australopiths (2nd row), South African australopiths and 
Homo (3rd row), and Kenyan Pleistocene hominins (4th row). 3D scans of original fossils 
and fossil casts (Hadar A. afarensis) were acquired with a NextEngine desktop scanner 
and digital cross-sectioned along the coronal plane using the trim tool in the software 
ScanStudio. All of the fossils have a human-like horizontal articular surface relative to 
the long axis of the tibia except KNM-ER 2596 which possesses a valgus ankle. See text 
for details. 
 

within one standard deviation of the modern human mean, except for KNM-ER 1500 

which had a lower angle of 87.4˚, though this too is within the modern human range 

(Figure 4.14). 

 The angle formed between the long axis of the ankle and the articular surface of 

the talocrural using isolated tali discriminated African apes from humans (Figure 4.16). 
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The angle in chimpanzees is 15.5˚ ± 2.9˚, in lowland gorillas 18.8˚ ± 2.5˚, and 14.2˚ ± 

2.8˚ in mountain gorillas. The angle in the human talus is 10.2˚ ± 2.3˚, significantly 

distinct from the average value measured in the talus of the African apes (t=12.1, 

p<0.001). Among the African apes, Gorilla gorilla beringei and Pan have statistically 

equivalent angles between the axis of rotation and superior surface of the talus (p=0.11). 

All twelve hominin fossils measured were within the range of variation found in modern 

humans, though interestingly all twelve have values below the human mean, and thus 

quite distinct from the African ape condition. StW 486, KNM-ER 1476, KNM-ER 813, 

KNM-ER 1464, and Omo 323-76-898 are within one standard deviation below the 

human mean, OH 8, TM 1517, StW 363, and KNM-ER 5428 within two standard 

deviations below the human mean, and A.L. 288-1 and StW 88 are within three standard 

deviations below the human mean, though all are within the modern human range. When 

these values are converted to a measure of the angle that the long axis of the tibia forms 

with its articular surface, the 12 hominin tali give a range of 90.3˚-94.5˚, well within the 

range of the modern human ankle.    

 African apes, especially chimpanzees and lowland gorillas, have thicker medial 

malleoli relative to the mediolateral width of the tibial articular surface than what is 

found in modern humans (Figure 4.17). Relative to its anteroposterior length, the width of 

the medial malleolus in African apes is 70.1% ± 6.4%, whereas in humans the relative 

width of the medial malleolus is 56.6% ± 5.6%. Mountain and lowland gorillas are 

statistically identical for this measure (p=0.99), though they together have significantly 

thinner malleoli than chimpanzees (p=0.01). The African apes collectively have a 

significantly thicker medial malleolus than modern humans (t=19.7, p<0.0001). All of the 
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Figure 4.16. Geometry of hominin ankle assessed from isolated tali. 

 
Figure 4.16. Boxplots of the angle formed between the axis of rotation of the talocrural 
joint and the superior surface of the talus show the median (black bar), interquartile 
ranges (blue/gray), and overall ranges of the data. Outliers defined as greater than 1.5 
times the interquartile range are shown as circles. This angle differs between African apes 
and humans with the low angle in humans directly related to the perpendicular position of 
the tibia over the talus and consequently a valgus knee. All of the hominins studied had a 
human-like angle, suggestive of a perpendicular tibia and a valgus knee.  
 

hominin tibiae are human-like, possessing mediolaterally thin medial malleoli, except 

KNM-ER 1481 and KNM-ER 1500 which both have a relatively thick medial malleolus 

though still within the range of modern humans. These bones fall between the human and 

ape condition, within two standard deviations of the mean for both groups. 

 Human tali have a medial and lateral side with equal radii of curvature (Figure 

4.18). However, African ape tali have a flatter medial side of the talus with a larger radius 

of curvature than the lateral side. The ratio of the medial radius of curvature to the lateral 
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Figure 4.17. Thickness of the hominin medial malleolus 
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Figure 4.17. Vertically climbing apes have a thicker medial malleolus (ML) relative to 
the anteroposterior length of the medial malleolus (AP) than modern humans do. 
Boxplots of the thickness of the medial malleolus show the median (black bar), 
interquartile ranges (blue/gray), and overall ranges of the data. Outliers defined as greater 
than 1.5 times the interquartile range are shown as circles.  KNM-ER 1481 and KNM-ER 
1500 have relatively thick medial malleoli, but still fall within the range of modern 
humans with all of the other fossil hominin tibiae.  
 
radius of curvature is significantly smaller in modern humans than in either Pan or 

Gorilla (p<0.001). Gorilla gorilla beringei and Pan have statistically equivalent 

flattening of the medial side of the talus (p=0.87). South African fossil hominin tali StW 

486 and TM 1517 have the relatively flattest medial side to the talus and are thus the 

most African ape-like; however, they, like all other known hominin tali, fall within the 

modern human range for this feature.  
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Figure 4.18. Radius of curvature of hominin talus. 
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Figure 4.18. Boxplots of the relative radii of curvature in the talus show the median 
(black bar), interquartile ranges (blue/gray), and overall ranges of the data. Outliers 
defined as greater than 1.5 times the interquartile range are shown as circles.  African 
apes have a lower radius of curvature on the medial side of the talus than modern human 
tali, which have an equal radius of curvature on the medial and lateral sides. Fossil 
hominins all fall within the range of modern humans for this value, though StW 486 and 
TM 1517 have the most medially flattened tali.  
 

Discussion 

Early hominins were not chimpanzees, though some have argued that the last 

common ancestor of humans and chimpanzees was probably quite chimpanzee-like 

(Wrangham and Pilbeam, 2001), including in its locomotion (Gebo, 1996; Richmond et 

al., 2001). The use of the chimpanzee as a model for early humans both in terms of 

behavior and locomotion has been questioned (Sawyer and Lovejoy, 2008). However, 

when the likelihood of vertical climbing in hominins is discussed in the 
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paleoanthropological literature, the model that is employed is often a chimpanzee one, as 

exemplified by the biomechanical scenario put forth by Susman et al. (1984) and detailed 

in the introduction. Sawyer and Lovejoy (2008) have recently argued that the tendency to 

regard early hominins and australopiths as chimpanzee-like is becoming more and more 

prevalent. I suggest that climbing adaptations in early hominins have been promoted with 

the chimpanzee model in mind, but without a rigorous test of the utility of this model. 

With this study, I attempt to correct that trend by testing whether hominins had 

adaptations for vertical climbing in an ape-like manner focusing specifically on the 

morphology of the ankle. It is important to emphasize that this study did not test whether 

hominins vertically climbed per se, but whether hominins vertically climbed specifically 

in a manner kinematically similar to that practiced by modern apes, though the results do 

inform questions of arboreality in general.   

During vertical climbing bouts, chimpanzees and gorillas pull their bodies close to 

the vertical substrate in part via extreme dorsiflexion at the talocrural joint (Chapter 2). In 

addition, there is inversion and abduction of the foot relative to the long axis of the tibia. 

Based on data from both orthopaedic and primate studies, it was hypothesized that 

vertically climbing primates would produce a loading environment at the talocrural joint 

with high anterior and medial forces and therefore would possess distal tibia with broad 

anterior and medial aspects and a large medial malleolus. Additionally, the ankle of 

vertically climbing apes would have a geometry that encourages dorsiflexion, abduction, 

and inversion. There are some measures used in this study that have been demonstrated to 

be reliable skeletal indicators of vertical climbing across a wide range of primates 

(Chapter 3). These include the broad anterior aspect of the tibial articular surface, a 
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mediolaterally wide medial malleolus, and a mediolaterally wide metaphysis. Absence of 

these morphologies in the hominin talocrural joint provides strong evidence against 

substantial ape-like vertical climbing in fossil hominins. However, the other 

morphologies examined in this study, though not particularly effective for identifying 

vertical climbing per se, are still useful in reconstructing the overall function of the ankle 

in fossil hominins. These other morphologies, such as the relative tibial depth and the 

radii of curvature on the talus, may not be adaptations specifically for vertical climbing, 

but by moving away from this general primate morphology, humans and their fossil 

predecessors would become even less capable of vertical climbing and more poorly 

adapted in the ankle for bouts of ape-like arboreal locomotion. These are explained in 

more detail below.  

A size-standardized measure of the distribution of bone on the articular surface of 

the distal tibia reveals that relative to modern humans, African apes have dramatically 

broader anterior aspects (Figure 4.4). None of the twelve fossil hominin tibiae ranging in 

time from 4.12 to 1.5 mya have a broad anterior surface (Figures 4.5 and 4.6), suggesting 

that no known hominin was adapted to loading its talocrural joint during extremes of 

dorsiflexion. In contrast, human tibiae are adapted to withstand loads along the posterior 

and lateral aspects of the ankle. Forces at the ankle are highest during heel strike and 

push-off, which both occur when the foot is in a position of plantarflexion (Seirig and 

Arvikar, 1975; Morris, 1977; Stauffer et al., 1977; Burdett, 1982; Czerniecki, 1988; 

Rodgers, 1978; Nordin and Frankel, 1989), and thus it is suggested here that the broad 

posterior aspect of the tibial articular surface is an adaptation for reducing these peak 

forces. This increase in joint force in a position of plantarflexion is also reflected by 
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increased bone strength in the posterior portion of the distal tibia (Hvid, 1985) and an 

increase in bone volume density and trabecular number, thickness, and orientation in the 

posterior portion of the distal tibia (Lai et al., 2005). The reasons for the broader lateral 

aspect of the joint are not as clear, though the rapid pronation of the foot after heel 

contact (Matsusaka, 1986) may be a factor. Additionally, the increased length of the 

lateral aspect of the tibia may be a means by which the hominin tibia has minimized the 

amount of rotation that occurs as the tibia moves over a cone shaped talus. This 

minimization of tibial rotation over the talus during dorsiflexion, quantified as 0˚ (Figure 

4.13 this study); 2.5˚-3˚ (Close, 1956), 2.5˚ (Michelson and Helgemo, 1995), or as great 

as 6˚ (Leardini et al., 1999) is significantly less than the 8.75˚ estimated for the great apes 

(Latimer et al., 1987; Figure 4.3 this study). The lower value of rotation of the tibia over 

the talus estimated in this study is most certainly a result of using only dry bone 

specimens, and ignoring the role that the deltoid ligament has in limiting movement on 

the medial aspect of the ankle and encouraging some internal rotation of the tibia during 

dorsiflexion (Michelson and Helgemo, 1995). However, regardless of approach, by 

reducing tibial rotation during dorsiflexion, lateral movement is minimized and the 

human foot remains more or less in the anteroposterior plane of forward movement. In 

contrast to other studies (Christie, 1977), this study found that the arc lengths of the tibia 

and corresponding talus of the A. afarensis hominin A.L. 288-1 (Lucy) were strikingly 

human-like and would have resulted in very little foot abduction during dorsiflexion. 

These data are consistent with results from Latimer et al. (1987). The same results were 

found on the A. africanus StW 358/StW 363 ankle as well (Figure 4.13). This reduction 

of tibial rotation limits the amount of abduction that occurs at the ankle during 
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dorsiflexion in humans and extinct hominins and is, in part, a function of an elongated 

lateral aspect of the tibial articular surface. This last statement is particularly the case in 

interpreting the A. africanus fossils given that the StW 363 talus by itself may have 

suggested more foot abduction (Figure 4.12) than the entire ankle would allow (Figure 

4.13). The incongruence between OH 8 and OH 35 (Figure 4.13) lends support to the 

hypothesis that these two bones do not belong to the same individual (Aiello et al., 1998; 

Wood et al., 2001; contra Stern and Susman, 1982).  

By having more bone devoted to the lateral and posterior portions of the distal 

tibia, humans necessarily reduce the relative amount of bone that is along the anterior and 

medial portion of the joint surface. There appears to be a trade off in the distal tibia in 

which adaptations for efficient force distribution through the talocrural joint surface 

during bipedalism renders the bone maladapted for joint movements and force 

distribution incurred during bouts of ape-like vertical climbing. An idealized distal tibia 

of a hominin well adapted to withstanding the loads incurred on the joint during 

bipedality and during ape-like vertical climbing may require joint surfaces that are 

anteriorly and medially large for climbing, and posteriorly and laterally wide for 

bipedality. It is possible that the size-standardized method employed in this study would 

not recognize such a bone as both a climber and a biped. However, this hypothetical bone 

would increase the mass of the distal portion of the tibia and increase the energetic costs 

of lifting that bone during terrestrial locomotion (Hildebrand, 1985; Steudel, 1990; 

Minetti et al., 1994). For tibia in which the proximal and distal portions of the tibia are 

both present (KNM-KP 29285, A.L. 288-1, KNM-ER 1481), the proximal end predicts a 

hominin of larger mass than the distal end (McHenry, 1992; Leakey et al., 1995). These 
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data suggest that in accordance with the energetic constraints of walking bipedally, 

hominins by 4.12 mya already had reduced the amount of bone in the distal end of the 

tibia, slightly reducing the costs of lifting that bone during walking. With the amount of 

bone at a minimum, the question of where in the joint the hominin distributes that bone 

becomes even more important in addressing the question of locomotion. The morphology 

of the known hominin tibiae with long lateral and posterior aspects of the bone, but 

shortened anterior widths (Figure 4.8), suggest strongly that the evolution of bipedalism 

rendered their ankles maladapted for ape-like vertical climbing.  

Adaptations for distributing force through a dorsiflexed ankle can also be 

observed in the African ape talus, which has a broad anterior aspect and is thus 

considered more ‘wedged’ than human tali (Sewall, 1904; Lewis, 1980; Gomberg, 1981; 

Langdon, 1986; Gebo, 1992; this study Figure 4.9). Because the talus can be modeled as 

a cone (Inman, 1976; Bremer, 1985; Latimer et al., 1987), a more wedged talus also has a 

longer lateral than medial side in comparison with a talus that is only weakly wedged. 

Therefore, the angular measure for talar wedging (Figure 4.9) mirrors the results for the 

measure of talar abduction (Figure 4.12). The relationship between dorsiflexion and 

abduction in the ankle is a well established one in humans (Close, 1956; Lewis, 1980; 

Bremer, 1985; Sigeler et al., 1988; Scott and Winter, 1991; Michelson and Helgemo, 

1995; Leardini et al., 1999) and has been argued to be a primate synapomorphy (Dagosto, 

1985). African ape tali, with longer arc lengths along the lateral aspect of the joint than 

the medial, provide a geometry over which the tibia will become internally rotated during 

dorsiflexion and puts the foot in a position of abduction. The longer lateral side also 

creates a geometry on the superior aspect of the talus in which the anterior aspect of the 
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articular surface is broad and capable of efficiently distributing forces through a joint 

loaded in extreme dorsiflexion. Thus, adaptations for dorsiflexion in the talus of African 

apes result in a joint morphology that increases foot abduction as well. All of the hominin 

tali studied have a human-like architecture to the superior surface of the talus except 

perhaps StW 363 and TM 1517. Though towards the ape-like morphology, StW 363 and 

TM 1517 are still within the range of modern human variation. When StW 363 is 

combined with the associated tibia StW 358, it lacks the foot abduction typical of vertical 

climbing African apes (Figure 4.13).  

 Additional differences between human and African ape ankles demonstrate that 

adaptations for bipedality result in morphologies that would make vertical climbing in a 

ape-like manner more difficult, if not impossible. These include morphologies related to 

the valgus knee of bipedal hominins.  

The bicondylar angle of the distal femur has long been argued to represent a 

critical adaptation for bipedality by positioning the knees directly under the center of 

mass (Walmsley, 1933; LeGros Clark, 1947; Heiple and Lovejoy, 1971). Work on the 

talocrural joint (Latimer et al., 1987) linked the ankle to the knee by demonstrating that 

tibia oriented perpendicularly over the foot occurs only in a lower limb that possesses a 

valgus knee. Therefore, isolated distal tibia can be used to assess whether that individual 

hominin had a bicondylar angle of the undiscovered distal femur or not (Figure 4.19). 

Using the angular relationships developed in Latimer et al. (1987), this study extends 

distally the elements that can be used to determine whether a hominin had a bicondylar 

angle. Because of the known relationship between the axis of rotation of the ankle and the 

superior surface of the talus (Latimer et al., 1987), isolated tali can be used to reconstruct  
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Figure 4.19. General angular geometry of lower limb in apes and humans. 

 
Figure 4.19. Relationship between the bicondylar angle and the angle formed between the 
long axis of the tibia and the talocrural joint in apes (left) and humans (right). In apes, the 
femoral shaft is straight or slightly bowed, and the tibia is obliquely oriented over the 
feet. This orientation positions the feet under the center of gravity, but not the knees, 
which allows the foot to be easily inverted against a tree during vertical climbing bouts. 
However, humans (right) have both the knees and the ankles under the center of gravity. 
This is obtained by obliquely orienting the femur, while evolving a straight tibia relative 
to the plane of the talocrural joint. This morphology is adaptive for bipedalism, and 
maladaptive for climbing.  
 

the orientation of the long axis of the tibia over the foot (Figure 4.3), and therefore 

determine whether the knee was in a varus or valgus position. These data imply that an 

isolated talus may be used to reconstruct the general geometry of the entire lower limb, 

from the orientation of the tibia over the foot, to the position of the knee. The angle of the 

tibia in 12 hominin tibia and 12 hominin tali are in the modern human range and either 

directly or indirectly demonstrate that these 24 hominins had a perpendicularly oriented 

tibia over the foot, and therefore all 24 hominins would also possess a valgus knee and 

bicondylar angle. Specimens for which a distal femur is also present (A.L. 288-1, KNM-

ER 1481, KNM-ER 1500, and KNM-WT 15000) corroborate this hypothesis. A single 

purported hominin distal tibia, KNM-ER 2596, has an obliquely angled tibia over the 
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talus and thus would have had a varus knee position. The implications of this are 

discussed below. 

The presence of a perpendicularly oriented tibia over the talus and a valgus knee 

in all but one of the hominin fossils studied, suggests these individuals were adapted for 

bipedality by positioning both the knee and ankle directly under the center of gravity. 

However, this adaptation for upright walking maladapts the lower limb for vertical 

climbing in an ape-like manner. An obliquely oriented tibia over the talus naturally puts 

the foot in an inverted position. Chimpanzees place the sole of their foot against the side 

of the vertical substrate during vertical climbing bouts. Having an obliquely oriented tibia 

relative to the talus allows the ape to keep its leg close to the tree and close to the center 

of gravity while still maintaining an inverted position of the foot against the side of the 

tree (Preuschoft, 1970; Chapter 2). However, having a perpendicularly oriented tibia over 

the talus, as is the case in modern humans and in fossils hominins (except KNM-ER 

2596), precludes climbing in this ape-like manner. Instead, this morphology forces a 

climbing hominin to adopt one of two other climbing strategies. 1.) The sole of the foot is 

placed along the side of the tree as in modern chimpanzees and the knees are splayed 

outwards. 2.) The sole of the foot is positioned on the anterior portion of the tree and 

extreme dorsiflexion at the talocrural joint brings the climbing hominin close to the 

vertical substrate. Given that data from the tibial articular surface already suggest that 

hominins were not loading their joint in positions of extreme dorsiflexion (Figures 4.5, 

4.6 and 4.9) and given that they may not have been capable of positions of extreme 

dorsiflexion at all (Chapter 5; Figure 4.10), the more likely climbing strategy is one in 

which that knees splay laterally and the hominin ascends vertically in a pulse like 
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manner. This is occasionally practiced in modern human populations (Devine, 1985) and 

has been observed as a climbing strategy in modern baboons (Hunt, 1991; Chapter 2) and 

orangutans (MacKinnon, 1974). This approach would increase the shear forces on both 

the ankle and the knee during climbing (Latimer et al., 1987). Thus, the orientation of the 

tibia over the talus in all but one fossil hominin demonstrates that if these early bipeds 

were climbing, they were probably not climbing in a manner similar to that practiced by 

modern apes.  

The adoption of bipedality by early hominins increased the load being absorbed 

by the distal tibia. Adaptations to this increased load include both an increase in the 

anteroposterior dimensions of the bone (Figure 4.11), and the depth of the articular 

surface of the distal tibia (Figure 4.10). However, both of these adaptations hinder the 

ability of the hominin to dorsiflex to the extremes at the ankle necessary to vertically 

climb like a chimpanzee or a gorilla. Having anteroposteriorly short and mediolaterally 

wide distal tibia with relatively flattened articular surfaces, Africa apes are able to both 

increase their range of flexion, and efficiently distribute mediolateral forces through the 

ankle joint. An expansion of the anteroposterior dimensions of the distal tibia in hominins 

allow them to more efficiently distribute axial forces that occur during bipedal walking, 

however, this also implies that during dorsiflexion, the anterior edge of the bone will 

meet the talar neck sooner than in bones with shortened anteroposterior dimensions. In 

addition, the deeply concave articular surface of the distal tibia may serve two roles. 

First, a curved surface increases the area of the bone, without increasing any of its linear 

dimensions. Treated as a flat surface, an average human distal tibia has a surface area of 

about 7.7 cm2, but when the average curvature of 16.1% the length of the tibial surface 
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(Figure 4.10) is considered as well, the area increases to 8.3 cm2, an addition of roughly 

8%. The pressure on the distal tibia is reduced by having a curved surface. In addition, 

and perhaps more importantly, forces are best distributed through a joint if they remain 

perpendicular to the articular surface maximizing the compressive component of the 

force (where bone is strongest), and minimizing shear forces (Latimer et al., 1987; 

Hamrick, 1999). During walking, humans range from 20 degrees of dorsiflexion to 50 

degrees of plantarflexion (Donatelli, 1990) and only a curved surface permits forces to 

remain perpendicular through the entire range of motion. The curved arch of the distal 

tibia has been hypothesized to be critical for maintaining joint strength (Lauge-Pedersen 

et al., 2002).  

All of the fossil hominin tibiae studied possessed anteroposterior dimensions 

within the human range, and distinct from the mediolaterally expanded tibia found in the 

African apes. The depth of the articular surface was human-like and reflective of 

committed bipedality in all hominin tibia except OH 35 and KNM-ER 2596. As 

explained in the results section, the OH 35 tibia is damaged anteriorly and a minimum 

depth of the articular surface could only be estimated. These data imply that the adoption 

of bipedality resulted in adaptations related to the efficient distribution of forces through 

the joint surface that are in direct conflict with the motions necessary to climb in a ape-

like manner. An anteroposteriorly wide distal tibia with a deeply concave articular 

surface would not be able to achieve the ranges of dorsiflexion that permit apes to pull 

their bodies close to the vertical substrate thus reducing their climbing costs. However, 

the KNM-ER 2596 tibia is decidedly flat in the anteroposterior direction, and thus unlike 
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that found in modern humans or the other extinct hominins. The implications of this 

morphology are discussed below.   

 

Posterior tilt 

 Much has been made of the posterior tilt of the tibial articular surface in the 

sagittal plane. It has been suggested to reflect a “plantarflexed set” to the talocrural joint, 

which would aid in arboreality and perhaps even in hindlimb hanging positions (Stern 

and Susman, 1983; Susman et al., 1984; Hunt, 1994). The posterior tilt to the joint axis 

occurs in A.L. 288-1 (Stern and Susman, 1983) and though suggested for the A. africanus 

tibia StW 514b (Berger and Tobias, 1996), it is not complete enough to make this 

determination (pers. obs.). There is also great variation in this feature and its functional 

significance is unclear (Latimer et al., 1987).  

 If this feature was related to hindlimb grasping, the species that engages in 

hindlimb grasping the most of the apes (Pongo) should have the most plantarflexed set to 

the joint. This is clearly not the case (Figure 4.20). Instead, all of the apes have roughly 

the same angle, considerably less than what is found in modern humans and in most 

hominins. Only A.L. 288-1, and the presumably Homo distal tibia StW 567 have 

anteriorly prolonged articular surfaces outside of the range of modern humans, and thus a 

plantarflexed set to the joint. It is not entirely clear what this morphology would have 

meant for these individuals though it is suggested here that this morphology is neither 

functionally ambiguous (contra Latimer et al., 1987) nor does it aid in arboreality (contra 

Stern and Susman, 1983; Susman et al., 1984; Hunt, 1994). 
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Figure 4.20. Dorsiflexed “set” to the hominin ankle in the sagittal plane. 

 
Figure 4.20. The angle formed between the articular surface of the distal tibia and the 
long axis of the tibia in the sagittal plane in humans, apes and hominins. Boxplots of this 
angle show the median (black bar), interquartile ranges (blue/gray), and overall ranges of 
the data. Outliers defined as greater than 1.5 times the interquartile range are shown as 
circles.  Humans have a posteriorly tilted joint surface, whereas the apes have a 
perpendicular or anteriorly tilted joint surface. There is no difference between the African 
apes and orangutans for this measure. The hominins fall within the human distribution 
except for A.L. 288-1 and StW 567 (explained in text).  
 

If the articular surface is to remain perpendicular to the talar trochlea throughout 

the range of motion, the sagittal plane of the distal tibia should tilt posteriorly in 

individuals with a longitudinal arch (Figure 4.21). This morphology can be found in most 

modern humans. One ramification of this morphology has to do with the range of 

dorsiflexion and plantarflexion, and loading of the joint in these directions. As is apparent 

from the model in Figure 4.21, those with a longitudinal arch would have a limited 
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capacity for dorsiflexion because anterior aspect of the distal tibia would impinge on the 

dorsally tilted talar neck after only slight dorsiflexion; whereas a flat-footed individual 

would have the opportunity for more substantial dorsiflexion. If this were the case, then 

within the human population there should be a relationship between the tilt of the tibial 

surface in the sagittal plane and the morphology of the anterior aspect of the distal tibia. 

Specifically, modern humans with a greater posterior tilt to the distal tibia should have a 

greater potential for dorsiflexion and therefore an expanded anterior aspect of the talar 

facet. The posterior tilt to the distal tibia and the size-standardized with of the anterior 

aspect of the tibia are indeed correlated (Figure 4.21) (r=0.279, df=67, t=2.38, p=0.01). 

Importantly, though the sagittal angle of A.L. 288-1 and StW 567 suggest that these two 

individuals may have had lower arches or even flat feet, neither hominin loaded the 

anterior aspects of their distal tibia more than the average modern human with or without 

flat feet (Figure 4.22). Even though these two hominins may have been capable of more 

dorsiflexion given the geometry of their tibia, they did not load their tibia in positions of 

extreme dorsiflexion, and thus probably did not engage in much, if any, ape-like vertical 

climbing. Therefore, it is argued here that the posterior tilt to the distal tibia is not, by 

itself, evidence for arboreal activities in early hominins (contra Stern and Susman, 1983; 

Susman et al., 1984; Hunt, 1994). Instead, this morphology in A.L. 288-1 and StW 567 

would have enabled these hominins to have a greater range of dorsiflexion, although the 

distribution of bone on the articular surface suggests that they did not regularly load their 

talocrural joint in this manner.  
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Figure 4.21. Models of flatfootedness in early hominins. 

 
Figure 4.21. Model of the relationship between the plantarflexed tilt of the distal tibia in 
sagittal view and the presence of a longitudinal arch. In order to maintain a tibia 
perpendicular to the ground, the articular surface of the distal tibia must be posteriorly 
tilted in feet with a high longitudinal arch (figure on right), whereas a flatter foot (left) 
can be tilted anteriorly or be perpendicular to the long axis of the bone. A low medial 
arch in the foot of AL 288-1 and StW 567 may explain the relatively low sagittal angle 
found in these tibiae (Figure 4.23).  
 

The unusual morphology of A.L. 288-1 and StW 567 reveals information about 

these two as individuals, rather than saying anything about general species level 

morphology or behavior. A.L. 333-6, and A.L. 333-7, other members of A. afarensis, 

have a modern human-like sagittal tilt to the articular surface of the distal tibia. Although 

A.L. 288-1 may have had relatively flat feet, her species may have had individuals with 

well developed longitudinal arches as demonstrated by other tibia, foot bones (see 

Chapter 7), and the Laetoli footprints (White, 1980; White and Suwa, 1987). 

Additionally, StW 567, most likely a distal tibia of Homo erectus (Kuman and Clark, 
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Figure 4.22. Relationship between plantarflexed set to human ankle and shape of articular 
surface. 
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Figure 4.22. The relative width of the anterior surface of the talar facet on the distal tibia 
of modern humans (n=69) is expanded in tibia with a “plantarflexed set”, measured by 
the low angle between the long axis of the tibia and the articular surface in the sagittal 
plane. The line drawn is the RMA regression line (m=-0.016, b=2.72). The broad anterior 
surface on plantarflexed tibia may be evidence that this angle is related to the height of 
the medial arch as modeled in Figure 4.24.  
 

2000; Curnoe and Tobias, 2006) is one member of a species that almost certainly had a 

high proportion of individuals with a well developed longitudinal arch (Bramble and 

Lieberman, 2004; Lordkipanidze et al., 2007; Chapter 7) including KNM-WT 15000 and 

perhaps KNM-ER 1481 (Figure 4.21). Thus, just as in the modern human population 

today, flat-footedness may have been variably present.  
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The issue of KNM-ER 2596 

 KNM-ER 2596 has not been described in detail but was identified by Walker and 

Leakey (1985) as a hominin, though notes at the National Museum of Kenya suggest it 

may be from a Theropithecus. This is the first thorough treatment of this fossil.  

The results from this study demonstrate that many of the adaptations for 

bipedality in the ankle joint of early hominins would have maladapted them for the 

positions and loading environments encountered in the ankle joint of vertically climbing 

African apes. These include a perpendicularly oriented tibia over the foot, and a deeply 

concave articular surface of the distal tibia which would limit inversion and dorsiflexion 

respectively. However, for both of these measures, the distal tibia KNM-ER 2596 is 

unlike modern humans (Figures 4.10, 4.14, 4.15). This tibia has an oblique orientation of 

the long axis over the articular surface, implying that this individual did not possess a 

valgus knee and therefore may have walked with a bent hip-bent knee (Lovejoy, 2005), 

whether bipedally or quadrupedally. In addition, the shallow depth of the articular surface 

would have allowed an increased range of dorsiflexion at the ankle. However, even 

though this individual would have been able to achieve positions of inversion and 

dorsiflexion at the ankle, there is little evidence that the ankle was frequently loaded in 

these joint positions. The medial malleolus, though short and stout, does not have the 

relative thickness found in modern ape medial malleoli (Figure 4.17), and unlike African 

apes, this tibia does not possess the broad anterior surface adaptive for bouts of vertical 

climbing (Figure 4.6). There is also the complete absence of a distal fibular facet, which  
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Figure 4.23. Distal tibia KNM-ER 2596. 

 
Figure 4.23. The 1.9 mya distal tibia from Koobi Fora, Kenya KNM-ER 2596 in (from 
left to right) anterior, lateral, posterior, medial, and inferior views. Notice in anterior and 
posterior view the valgus tilt to the articular surface (also clear in Figure 4.18). In the 
lateral view image, note the expanded metaphysis relative to the tibial shaft.  
 

implies that unlike apes, this individual did not have a strong grasping hallux (Figure 

4.23). 

 The obliquely tilted tibia, square shaped articular facet, weakly developed medial 

malleolus, and absence of a distal fibular facet are all features present to varying degrees 

in cercopithecoid distal tibia of the same general size. However, this bone is not from the 

similarly sized and contemporary Theropithecus oswaldii (Figure 4.23). The distal tibiae 

of Theropithecus have very strongly keeled anteroposteriorly directed midline to the 

distal tibia, and the medial malleolus has both a bulbous anteromedial portion and a deep 

intercollicular groove for the posterior tibiotalar ligament (Chapters 3 and 5). KNM-ER 

2596 has a mediolaterally flat tibial surface, and a very weak attachment for the posterior 

tibiotalar ligament on an anteromedially flat medial malleolus. However, there is another 

large-bodied primate from the Koobi Fora deposits, Rhinocolobus (Leakey, 1982). There 

are two distal tibia identified as coming from Rhinocolobus in the Kenya National 

Museum: KNM-ER 1542 and KNM-ER 45613, though the second of these two is quite 

unlike ER 1542 and likely to be from a Theropithecus oswaldii instead. KNM-ER 1542, 

like KNM-ER 2596 has a relatively flat anteromedial portion of the medial malleolus, 
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and a mediolaterally flattened articular surface of the distal tibia when compared to 

Theropithecus. There are adaptations in the upper limb of the KNM-ER 1542 skeleton for 

arboreality and likewise, the KNM-ER 1542 distal tibia has morphology consistent with 

an arboreal large-bodied colobine (Chapter 3). KNM-ER 2596, however, possesses a key 

morphology thought to be related to terrestriality, and in particular bipedality. 

 The metaphysis of KNM-ER 2596 is expanded to a degree only found in modern 

humans and hominins (Figure 4.24). This expanded metaphyseal volume has been argued 

to be an adaptation for absorbing the large forces incurred during bipedalism (Kunos and 

Latimer, 2000) and has been used as evidence for bipedality in early hominins such as A. 

anamensis (Leakey et al., 1995; Ward et al., 2001). Importantly, Rhinocolobus does not 

have this expanded volume. The more terrestrial Theropithecus possesses a larger relative 

metaphyseal volume than Rhinocolobus, though still significantly less than what is 

present in KNM-ER 2596 (Figure 4.26).  

The combination of morphology present in the KNM-ER 2596 tibia is perplexing. 

The expanded metaphyseal volume suggests strongly that this individual was terrestrial, 

and perhaps even bipedal. However, the obliquely oriented tibia over the articular surface 

is evidence that the individual did not possess a valgus knee and may have walked in a 

bent-hip, bent-knee fashion. The inverted set to the articular surface also adapts KNM-ER 

2596 for bouts of climbing. Additionally, this individual would have been capable of 

extreme dorsiflexion, both because of the shallow depth of the tibial articular surface and 

the absence of a strong attachment for the deltoid ligament (Chapter 5). However, there is 

little evidence for frequent loading of the joint in these positions of inversion and 

dorsiflexion because the medial malleolus is not robust, and the tibial articular surface 
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Figure 4.24. Expansion of distal tibial metaphysis in hominins. 

 
Figure 4.24. The length of the metaphysis of the distal tibia in the anteroposterior 
direction over the length of the articular surface of the distal tibia in the anteroposterior 
direction is graphed along the y-axis. Boxplots of this ratio show the median (black bar), 
interquartile ranges (blue/gray), and overall ranges of the data. Outliers defined as greater 
than 1.5 times the interquartile range are shown as circles.  Note that humans and fossil 
hominins all have an expanded metaphysis compared to the African apes. The KNM-ER 
2596 distal tibia is circled in red and shares with hominins an expanded metaphysis. It is 
thus quite unlike the Pleistocene cercopithecoid Rhinocolobus in this morphology.  
 

lacks the anterior expansion of the joint typical of a vertical climber.  

A conservative explanation is that KNM-ER 2596 was misidentified as a hominin 

and instead is a distal tibia from the large-bodied cercopithecoid Rhinocolobus. This 

would dramatically increase the variation known for this taxa, and would suggest a 

significant degree of terrestriality in this colobine. This hypothesis would also suggest 
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that an expanded metaphyseal volume is not solely a bipedal adaptation and thus its 

utility in identifying hominins in the fossil record would be limited.  

An alternative hypothesis is that KNM-ER 2596 possesses a combination of 

features consistent with an occasional biped that has the capacity to climb. Some have 

argued that H. habilis may have undergone an evolutionary reversal to possess even 

stronger adaptations for climbing that its Pliocene ancestors (Haeusler and McHenry, 

2007). Could KNM-ER 2596 be evidence for such a reversal? A potential problem with 

such an interpretation is that by having a varus knee this would not be a particularly 

efficient biped, and by not having a thick medial malleolus or wide anterior aspect of the 

articular surface of the tibia this would not be a particularly well adapted climber either. 

There are three other distal tibiae from this time period: KNM-ER 1481, KNM-ER 1500, 

and OH 35. All three have a perpendicularly aligned tibia relative to the articular surface. 

Furthermore, for all relative and absolute measures done in this and other studies 

(Chapter 6), KNM-ER 1500 and OH 35 are nearly identical to one another and it is 

suggested here that they are from the same sex of the same species (Figure 4.25). A 

fragmentary mandible of KNM-ER 1500 has features that may link it to P. boisei (Grausz 

et al., 1988, but see Wood, 1992; Wood and Constantino, 2007). If KNM-ER 1500 is P. 

boisei, then some of the original suggestions that the OH 35 tibia and fibula were 

associated with the OH 5 Zinj skull, found between 11-20 feet away (from Figure 4.21 in 

Leakey, 1971), may have been correct. The contemporary KNM-ER 1481 has been 

regarded by many to be from the genus Homo (Kennedy, 1983; Antón, 2003), and results 

of this study are consistent with this assessment. Thus, if OH 35 and KNM-ER 1500 are  
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Figure 4.25. Cross-section of hominin distal tibiae OH 35 and KNM-ER 1500. 

 
Figure 4.25. Cross section of plaster casts of OH 35 (left) and KNM-ER 1500 (right). The 
images have not been size adjusted and instead show how similar in size and shape these 
two fossils are to one another. The medial malleolus of the KNM-ER 1500 specimen has 
been copied and mirrored onto OH 35, which is missing its medial malleolus. The 
absolute size and morphology of these two specimens is so similar that they are suggested 
here to represent the same sex of the same species (see text for details). If, as has been 
argued (Grausz et al., 1988), KNM-ER 1500 belongs to P. boisei, the OH 35 may also be 
a P. boisei tibia, and not a tibia from H. habilis as has been hypothesized by others 
(Susman and Stern, 1982).  
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P. boisei, and KNM-ER 1481 is from Homo, it is difficult to find a taxonomic home for 

the morphologically distinct KNM-ER 2596.  

A final hypothesis is that KNM-ER 2596 is a hominin with valgus deformity of 

the ankle. This can occur in humans today as a result of many different causes including 

injury to deltoid ligament, muscular imbalance due to damage to the tendon of the 

posterior tibialis muscle, or malunion of a fractured tibia or fibula (Gibson and Prieskorn, 

2007). Wiltse (1972) noted that a malunion of a fractured proximal fibula in children less 

than 12 years old will quite often result in a valgus ankle. It is not clear at this time which 

of these three hypotheses is best supported by the evidence though this author finds the 

pathological argument the most compelling.   

 

How will we know if early hominins were climbing? 

 Findings from this study suggest that the evolution of bipedalism resulted in 

changes to the hominin ankle that rendered them poorly adapted for vertical climbing in a 

manner like modern chimpanzees. Kinematic data obtained from vertically climbing apes 

in this study (Chapter 2) and others (i.e. Isler, 2003) should be used to continue to test the 

chimpanzee model of vertical climbing on other joints of the postcranial skeleton. 

However, given the results obtained here, it is likely that the same conclusion will be 

reached: if currently known hominins were vertically climbing it was performed in a 

manner unlike that practiced by modern chimpanzees. Therefore, it is suggested that 

other models of climbing, including a cercopithecoid model (see Chapter 7) and a modern 

human-like model of climbing should be tested as well. It will also be important to test 

these models using skeletal elements or morphologies that are more likely to be sensitive 



 168

to the loading environment and thus epigenetically informative about the actual behavior 

of the animal (Ward, 2002). Other, indirect, methods discussed below may also be used 

to test for the likelihood for vertical climbing in our hominin ancestors.  

The consequences of being a poorly adapted climber, and still attempting to 

climb, is an important issue and is precisely the kind of approach needed to assess how 

natural selection shapes postcranial anatomy in apes and hominins. Pontzer and 

Wrangham (2004) argued that chimpanzees move less often in the trees than on the 

ground, yet they are postcranially better adapted for an arboreal environment. They 

suggested that although this anatomy comes at the expense of energetically efficient 

terrestrial travel (i.e. short hindlimbs), it is maintained by natural selection because of the 

severe consequences for being an occasionally arboreal animal, poorly adapted for 

traveling arboreally (Pontzer and Wrangham, 2004).  

The suggestion that falls from the canopy have helped shape chimpanzee and ape 

anatomy in general is supported by behavioral data on wild apes and by study of their 

skeletal remains. In two years of data collection at Gombe, Goodall (1986) observed 51 

chimpanzee falls from trees, including 13 from heights of over 10 meters. Of the 51 

individuals who fell from these heights, two died. Assuming the Goodall team observed 

all of the falls from the canopy over that two year period (which most likely they did not), 

the danger from falling and the selection pressures for retaining features that may prevent 

falling from a high canopy may both be quite high.  

 Fractures have been found in gibbon (Schultz, 1956) and orangutan (Lovell, 

1990) skeletons consistent with falls from a great height. In a comprehensive study of 

African great ape skeletal remains, Jurmain (1997) found that postcranial trauma is found 
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in 21.7% of chimpanzees (n=92), 17.7% of lowland gorilla skeletons (n=62), and 13.3% 

of bonobo postcranial remains (n=15). Of the 13 postcranial skeletons available from 

studied chimpanzees at Gombe, 30.8% of them had suffered fractures of the postcranial 

skeleton (Jurmain, 1997). Much of the craniodental trauma was related to inter and 

intragroup aggression and fractures of the ulna are consistent with the chimpanzee 

warding off blows from an attacker; however, much of the remaining trauma of the 

postcranial skeleton was consistent with falls from an arboreal environment (Jurmain, 

1997). Recently, Carter et al. (2008) studied the postcranial remains of 12 chimpanzees 

from study sites in the Kibale National Park, Uganda, and found some degree of 

postcranial trauma in 11 of them (91.7%). This includes a fractured pelvis and radius of 

an individual (KFB 107) who most likely died from a tree fall.  

 What is striking about these data is not only the frequency of tree falls from apes 

so well adapted for life in an arboreal setting, but also how often the skeletal record 

preserves evidence that severely damaged bones had healed. Recovery from severe falls 

has been noted by Goodall (1986), and does not require care by conspecifics.  

 Therefore, if early hominins still included climbing as part of their locomotor 

repertoire, and if, as has been demonstrated here and elsewhere, hominins were not as 

adept in an arboreal environment as modern chimpanzees, then one may expect a higher 

likelihood of hominins falling to the ground and suffering trauma, if not death. Given that 

scenario, it may be more likely that if hominins utilized an arboreal resource, they did so 

in a manner quite unlike chimpanzees. They presumably were unable to move quickly 

through the canopy to avoid predation, navigate aggressive intergroup encounters, or to 

hunt monkeys. However, even if they moved cautiously and only built night nests for 
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example, hominins still would have to get into the tree, and get out of the tree, thus 

increasing the risk of a fall. Furthermore, females with young either climbed with one 

arm, or the young still retained the ability to grasp onto the still retained body hair of the 

mother. Nevertheless, if hominins included climbing as part of their daily repertoire, even 

if they were as adapted for this environment as chimpanzees, they would, like every other 

ape species known, occasionally fall. A prediction from a hypothesis of frequent and 

adept climbing in the hominin fossil record may therefore include a high frequency of 

healed fractures in the hominin fossil record.   

A preliminary survey of the literature on hominin paleopathology and a study of 

femora, tibia, and foot bones of australopiths in the Kenya National Museum, and 

Department of Anatomy at the University of Witwatersrand by this author reveals a 

striking absence of healed fractures in the postcranial anatomy of early hominins. A 

healed compression fracture of the calcaneus is present in an A. africanus specimen from 

Sterkfontein (Fisk and Macho, 1992). The OH 8 foot preserves osteoarthritis or healed 

trauma on the anterolateral aspect of the metatarsals (Day and Napier, 1964; Stern and 

Susman, 1982; pers. obs.). The australopithecine femur KNM-ER 738 preserves evidence 

for a healed fracture on the femoral shaft (Leakey et al., 1972; pers. obs.). There may not 

be enough postcranial fossils yet to test this hypothesis of healed fractures as evidence for 

climbing and there may be taphonomic or collection bias that would reduce the apparent 

numbers of healed fractures in the hominin fossil record. However, this hypothesis should 

be tested with a more rigorous study of hominin postcrania and be reassessed as the 

hominin fossil record grows.  
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In addition, as proposed by Pontzer and Wrangham (2004), biomechanical models 

need to be developed and tested that address how a hominin may be adapted in an 

arboreal environment to specifically avoid falling. Instead of focusing on getting into the 

tree, perhaps we should be testing whether an early hominin could keep itself in that tree 

without losing its balance and falling. Along those same lines, we should begin to ask 

questions about compensatory anatomies that may permit arboreal activities despite all of 

the lower limb adaptations that maladapt the hominin for a life in the trees. For example, 

without a grasping hallux, the arboreal orangutan has evolved even longer pedal digits 

and even longer arms than its African ape cousins. In the context of hominins, we need to 

begin to ask whether a robustly built arm is enough to pull an animal with an adducted 

hallux, valgus knee (this Chapter), longitudinal arch (Chapter 7), and long lumbar region 

up into a tree, and to keep it there safely. This approach becomes even more critical when 

supposed climbing adaptations begin to be explained in non-arboreal ways. For example, 

the arboreally adapted convex lateral condyle (Hunt, 1994; Berger and Tobias, 1995) 

does not discriminate modern humans and apes (Organ and Ward, 2006) and is absent in 

most australopithecine tibia anyway (Lovejoy, 2005). Additionally, strong peroneal 

musculature (Stern and Susman, 1983; Susman et al., 1984; Hunt, 1994) may be an 

adaptation for preventing ankle dislocation suffered from rapid inversion during 

terrestrial bipedalism (Chapter 6). Therefore, if hominins were climbing, they would need 

even more exaggerated adaptations in the parts of their bodies not effected by the 

adoption of bipedalism (i.e. upper limb) to compensate for the loses of so many other 

arboreal adaptations (Wolpoff, 1996; Coffing, 1998; Ward, 2001). A biomechanical study 

of the upper limb in this context should be undertaken.  
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 Modern chimpanzees primarily climb trees to obtain food (Hunt, 1998) and to 

avoid predation (Preutz et al., 2007). In recent work at the chimpanzee sites of Fongoli 

and Assirik, Pruetz et al. (2007) found a relationship between the height of the nest that 

chimpanzees built and the risk of predation by lions, leopards, spotted hyenas, or wild 

dogs. Without predators, chimpanzees at Fongoli often make ground nests (Preutz et al., 

2007). Our Pliocene ancestors may have been able to acquire terrestrial food resources; 

however, it is not likely that they were able to entirely avoid predation. In fact, evidence 

for predation is present in the hominin fossil record, SK 54 the victim of a leopard (Brain, 

1969), the Taung child possibly an eagle (Berger and Clarke, 1995; Sanders et al., 2003; 

Berger, 2006), and Olduvai hominins taken by crocodiles (Njau and Blumenschine, 

2007). It is difficult to understand how a 30 kg bipedal primate, poorly adapted to an 

arboreal environment, could survive by building night nests and thus risking falls from 

the canopy or by remaining terrestrial at night and risking predation from felines. Yet, 

that is precisely the paleobiological scenario presented by the remains left by early 

hominins. Given these data, the hypothesis that australopiths were aggressive appears 

quite reasonable (Carrier, 2007). Certainly a more detailed reconstruction of the 

paleoenvironment of early hominins and continued biomechanical studies of the 

postcranial bones are needed to help better reconstruct the behavior and locomotion of 

the early bipeds. 

 

Conclusion 

 Many have used the postcranial remains of early hominins to reconstruct an 

animal adept at both terrestrial bipedalism and ape-like vertical climbing. However, these 
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reconstructions have not fully considered the kinematics of climbing in modern apes. 

Based solely on the morphology of the ankle, I suggest that early hominins did not, and 

could not, vertically climb like a modern African ape. In fact, many of the adaptations for 

terrestrial bipedalism found in the ankle of early hominins produce a joint geometry that 

would limit the ability to climb and is potentially maladaptive, given the danger 

associated with falling from the forest canopy. Based on the morphology of the hominin 

ankle, if hominins were climbing at all, they were doing so in a manner kinematically 

distinct from modern African apes.  
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CHAPTER 5 

 
Dorsiflexion, vertical climbing, and the evolution of the deltoid ligament. 

 
 

Abstract 

During vertical climbing bouts, non-human hominoids reduce their energy costs 

by pulling themselves close to the vertical substrate in part via extreme dorsiflexion at the 

ankle. This is in contrast to climbing cercopithecoids, which flex primarily at the midfoot. 

Modern humans are capable of only limited dorsiflexion without severe injury. 

Dissections of gorilla, chimpanzee, macaque, baboon, and human ankles reveal that the 

posterior tibiotalar portion of the deltoid ligament, known to inhibit dorsiflexion, is well 

developed in terrestrial monkeys and humans. This ligament, however, is relatively small 

in apes. Furthermore, in apes and atelines, the posterior tibiotalar ligament attaches close 

to the axis of rotation of the ankle, limiting its role to a joint stabilizer. This morphology 

helps facilitate the extreme dorsiflexion characteristic of vertically climbing primates. In 

contrast, the posterior tibiotalar ligament attaches more distantly from the axis of rotation 

in humans and cercopithecoid monkeys and thus serves the role as a motion inhibitor in 

the ankle of these primates. Though there is considerable variation, osteological 

correlates of a strong, dorsiflexion-restricting posterior tibiotalar ligament can be found in 

the distal portion of the medial malleolus and may provide another tool for interpreting 

the locomotion of extinct primates, including hominins. 
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Introduction 

The presence and attachment point of ligaments have played an important role in 

interpreting the functional morphology of fossil hominoids and hominins. For example, a 

strong iliofemoral ligament which helps balance the human body in an upright position, 

often produces a roughened surface called the intertrochanteric line (Lovejoy and Heiple, 

1972). This feature of the proximal femur has been used to infer the bipedal nature of 

fossil hominins (Aiello and Dean, 2002). Additionally, attachments for a strong nuchal 

ligament on the occipital region of the skull may be evidence for head stabilization during 

long distance running in early Homo (Bramble and Lieberman, 2004). Soft tissue and 

ligamentous characters of the knee have also been used to interpret how stable the knee 

of early hominins was during extended leg upright walking (Tardieu, 1999; Lovejoy, 

2007).  

Because the ligaments of the ankle both guide and restrict motion (Leardini et al., 

1999; Stagni et al., 2004; Wolf, 2006), kinematics of the ankle in both human and non-

human primates may be partially explained by ligamentous strength and orientation 

within the joint. Correlation between joint mobility, ligament function, and skeletal 

indicators of ligament strength and function can be used to interpret the fossil record and 

infer locomotion of extinct primates.   

The ankle contains a structurally complex array of ligaments that function 

primarily to stabilize the bony connections between the talus and the long bones of the 

lower leg. The distal tibia and fibula are attached to one another via the anterior and 

posterior tibiofibular ligaments. Three distinct ligaments, the anterior talofibular, 

calcaneofibular, and posterior talofibular ligaments, support the lateral side of the ankle 
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joint, whereas the medial side of the joint is anchored by the thick and strong deltoid 

ligament.  

The deltoid ligament, or the medial collateral ligament, of the ankle connects the 

medial malleolus of the tibia to the talus, navicular, and calcaneus (Figure 5.1). Many 

anatomical variants of its form have been suggested (Pankovich and Shivaram, 1979; 

Sarrafian, 1993; Milner and Soames, 1998; Boss and Hintermann, 2002), and the 

terminology and anatomical descriptions vary. The deltoid ligament is composed of two 

layers: a superficial and a deep deltoid. The superficial deltoid layer consists of three, and 

sometimes four, bands that all originate on the anterior and medial aspect of the medial 

malleolus of the tibia. These are the tibionavicular ligament, tibiospring, tibiocalcaneal, 

and superficial posterior tibiotalar. The tibionavicular and tibiospring ligaments are 

always present in the human ankle, whereas the tibiocalcaneal and superficial posterior 

tibiotalar are variably present (Milner and Soames, 1998). There are some who use the 

terms tibiospring and tibiocalcaneal interchangeably (Leardini et al., 2000) and some who 

do not (Boss and Hintermann, 2002). It is important to note in this context that assigning 

individual fibers to any of the three or four superficial deltoid ligaments is a somewhat 

arbitrary exercise as these fibers are usually continuous with one another (Sarrafian, 

1993). The deep deltoid layer originates from the most medial aspect of the medial 

malleolus and consists of a deep anterior tibiotalar ligament, and a deep posterior 

tibiotalar ligament. Although the anterior tibiotalar ligament is variably present in the 

human ankle, the posterior tibiotalar ligament of the deep deltoid can always be found 

(Milner and Soames, 1998). 
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Figure 5.1. Anatomy of the deltoid ligament. 

 
Figure 5.1. The medial side of the primate ankle is supported by deltoid ligament which 
anchors the medial malleolus of the tibia to the talus, navicular, and calcaneus. This study 
focuses on the largest of the deltoid fibers, the posterior tibiotalar ligament.  
 

 In identifying the different layers, fibers, origins and insertions of the ligaments of 

the deltoid ligament, Pankovich and Shivaram (1979) also coined terms for bony 

landmarks on the medial malleolus that serve as attachment points for the posterior 

tibiotalar ligament. The medial malleolus is shaped like the letter “U”, but with a 

triangular notch excavated from the inferoposterior aspect of the malleolus. Bordering 

this notch are two bony projections: the anterior and posterior colliculi (Figure 5.2). The 

notch between these bony landmarks is known as the intercollicular groove. It is in this 

groove that the robust posterior tibiotalar ligament anchors.   

The relative size and strength of these ligaments have been described using 

human cadavers. The posterior tibiotalar portion of the deltoid ligament is the thickest  

(Close, 1956; Klein, 1994; Milner and Soames, 1998) and the strongest (Attarian et al., 
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Figure 5.2. Anatomy of the posterior tibiotalar ligament. 

 
Figure 5.2. Distal tibia of a human cadaver (left) in lateral view showing the posterior 
tibiotalar portion of the deltoid ligament originating from the medial malleolus. On the 
right, a prepared osteological human distal tibia shows that the posterior tibiotalar 
ligament originates in the intercollicular groove, formed between the anterior and 
posterior colliculi.  
 

1985; Siegler et al., 1988; Sarrafian, 1993; Beumer et al., 2003) ligament in the human 

ankle. It also occupies the largest insertion area of any ankle ligament (Boss and 

Hintermann, 2002). The function of the deltoid ligament complex has also been 

determined primarily in studies using human cadavers, and a recent MR study of the 

ligament in vivo (Wolf, 2006). The posterior tibiotalar ligament primarily inhibits 

dorsiflexion (Rasmussen, 1985; Siegler et al., 1988; Leardini et al., 2000; Stagni et al., 

2004; Wolf, 2006; Figure 5.3) and can rupture when the ankle is forced into extreme 

dorsiflexion (Rasmussen et al., 1983). In his seminal work on ligament development, 

Beau (1939) even regarded the posterior tibiotalar ligament to be part of the posterior 

ligaments of the ankle, despite its position on the medial side of the tibia, further  
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Figure 5.3. Tightening of the posterior tibiotalar bands during dorsiflexion. 

 
Figure 5.3. Ligaments of the ankle that attach close to the axis of rotation do not change 
length (remain isometric) through the range of motion. Those attaching distant from the 
axis of rotation can resist joint motion. In human cadavers, the posterior tibiotalar 
ligament (DPTiTa) is slack in plantarflexion (arrow), and becomes taut in dorsiflexion 
(circled). Reproduced with permission from Stagni et al. (2004).  
 
 
emphasizing this ligament’s importance in restricting dorsiflexion. In addition to its 

primarily role as a dorsiflexion inhibitor, Harper (1987) used 24 cadavers to suggest that 

the deltoid ligament is a restraint against valgus tilting of the talus relative to the tibia, 

which would put the foot in a position of dorsiflexion, abduction, and eversion. Stormont 

et al. (1985) also found that the deltoid ligament resists eversion of the foot. The deltoid 

ligament is also integral in limiting medial movement of the tibia over the talus, and 

therefore allowing for some internal rotation of the tibia during dorsiflexion (Michelson 

and Helgemo, 1995). Finally, cadaver studies have found that sectioning of the posterior 

tibiotalar portion of the deltoid results in a separation of the tibia and fibula, and thus an 

increase in the intermalleolar distance (Barnett and Napier, 1953; Close, 1956; Skie et al., 

1989).  



 180

 Thus, the posterior tibiotalar ligament is the largest and strongest ligament in the 

human ankle and serves primarily to resist dorsiflexion. In Chapter 2, it was shown that 

vertical climbing great apes have significantly greater dorsiflexion capacity than bipedal 

humans or terrestrial monkeys. A comparison of these results with the available data from 

the literature demonstrates that apes (Pan troglodytes, Gorilla gorilla gorilla, Pongo 

pygmaeus, Hylobates lar) can achieve approximately 45˚ of dorsiflexion at the ankle 

during vertical climbing bouts whereas cercopithecoid monkeys dorsiflex to 

approximately 15˚-20˚ during their climbing bouts (Yamazaki and Ishida, 1984; Hirasaki 

et al., 1993; Chapter 2). Reports of dorsiflexion during walking in modern human ankles 

range from only 8.3˚ to 25.7˚ (Rome, 1996). Additional studies have found that the 

human ankle can be severely injured when forced beyond 45˚ of dorsiflexion with 

injuries ranging from avulsions of the deltoid ligament itself to fractures of the medial 

and lateral malleoli and tears of the flexor hallucis longus, flexor digitorum longus, and 

tibialis posterior muscles (Begeman and Prasad, 1990; Parenteau et al., 1998).  

Based on the preceding considerations, it is hypothesized that the posterior 

tibiotalar ligament is less developed in the vertically climbing apes, allowing a greater 

range of dorsiflexion; whereas terrestrial monkeys and bipedal humans have a strongly 

developed posterior tibiotalar ligament that inhibits dorsiflexion. Ligament strength is a 

function of its cross-sectional area, and therefore, the area of the ligament relative to the 

body size of the primate is a proxy for strength (Currey, 2002). Because this ligament 

attaches to the medial malleolus, differences in the morphology of the medial malleolus 

may provide skeletal correlates to posterior tibiotalar ligament size and strength.  
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 The use of skeletal correlates to infer the relative size and strength of the posterior 

tibiotalar ligament assumes that the posterior tibiotalar ligament has the same 

biomechanical properties in humans and in non-human primates. This study tests that 

assumption by assessing the strength, toughness, and stiffness of the posterior tibiotalar 

ligament in baboons (Papio anubis). If the biomechanical properties of the ligament are 

conserved across primates, then skeletal correlates of ligament strength can be applied to 

questions of locomotion with more confidence.  

In addition to cross-sectional area and biomechanical properties of the ligament, 

the area of attachment of the ligament relative to the axis of rotation of the joint is critical 

to the ligament’s function (Alexander and Bennett, 1987). Ligaments that attach on or 

close to the center of rotation remain isometric throughout the range of movement of the 

joint (Alexander and Bennett, 1987). This has been found to be the case for the human 

calcaneofibular and the tibiocalcaneal ligaments (Leardini et al., 1999; Stagni et al., 

2004). The axis of rotation of the ankle runs approximately through the tips of the medial 

and lateral malleoli (Inman, 1976; Latimer et al., 1987; Lundberg et al., 1989). The 

calcaneofibular ligament attaches close to the tip of the lateral malleolus (Burks and 

Morgan, 1994; Hintermann, 2002; Taser et al., 2006), and the tibiocalcaneal ligament 

attaches close to the tip of the medial malleolus (Pankovich and Shivaram, 1979; 

Sarrafian, 1993; Leardini et al., 2000). The origin of these ligaments is consistent with 

observations that their length does not change during a full range of motion of the ankle 

(Leardini et al., 1999; Stagni et al., 2004) supporting the hypothesis that ligaments 

originating near the axis of rotation stabilize a joint, but cannot resist motion (Alexander 

and Bennett, 1987).  
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Figure 5.4. Model of ligament theory. 

 
Figure 5.4. Model of the ligament theory proposed by Alexander and Bennett (1987) as 
applied to the posterior tibiotalar ligament. In all drawings the axis of rotation of the 
ankle runs through the tip of the medial malleolus of the distal tibia and is marked with a 
cross. In the model across the top, the ligament originates far from the axis of rotation, 
becomes slack in plantarflexion (green), but becomes taut in dorsiflexion (red). In the 
model across the bottom, the ligament originates close to the axis of rotation and thus its 
length does not change much at all in plantarflexion or in dorsiflexion.  
 

In regards to the posterior tibiotalar ligament, it is hypothesized that a more 

developed intercollicular groove shifts the origin of the ligament to a more posterior and 

superior position relative to the tip of the medial malleolus (Figure 5.4). By originating 

far from the axis of rotation of the ankle, the posterior tibiotalar ligament increases its 

ability to restrict dorsiflexion and eversion. A weakly formed, or even absent, 

intercollicular groove positions the origin of the posterior tibiotalar ligament to an area 
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close to the tip of the medial malleolus, and therefore, close to the axis of rotation. This 

latter scenario would result in a posterior tibiotalar ligament that could guide movement 

in the sagittal plane, but not restrict it because the ligament would not become taut at any 

point during the range of motion of the joint.  

Only Gomberg (1981) has provided a brief description of the comparative 

anatomy of the deltoid ligament in different hominoid species. He observed that humans 

have a strong deltoid whereas chimpanzees and gorillas have a long deltoid ligament 

(Gomberg, 1981). However, no quantitative description or analysis was done. 

Additionally, no quantitative description of the differences in medial malleolar shape 

among the different extant and extinct catarrhine species has yet been attempted. 

 

With this in mind, the following hypotheses will be tested in this chapter: 

 

Ligament size 

Ho: There are no differences in the relative size of the posterior tibiotalar ligament 

(PTTL) in humans, cercopithecoid monkeys, and apes. 

 

H1: Relative to body mass, the PTTL has a significantly larger cross-sectional area in 

species with limited dorsiflexion (humans and cercopithecoids) 

 

Biomechanical properties of ligament 

Ho: There are no differences in material properties of the posterior tibiotalar ligament 

between humans and a non-human primate. 
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H1: The material properties of the posterior tibiotalar ligament differ between primate 

species.  

 

Skeletal anatomy 

Ho: There are no differences between the attachment points for the deltoid ligament on 

the medial malleolus among hominins, apes, cercopithecoids, and atelines. 

 

H1: There are statistically significant differences in the morphology of the medial 

malleolus between among hominins, apes, cercopithecoids, and atelines and these 

differences are related to the attachment area and function of the posterior tibiotalar 

ligament of the deep deltoid. 

 

Materials and Methods 

 Dissections and ligament testing were performed on four macaques (Macaca 

mulatta) and ten baboons (Papio anubis) that had completed research protocols approved 

by the University of Michigan Institutional Animal Care and Use Committee. Additional 

dissections were made of five human cadavers at Wayne State University Medical 

School, and on an adult male chimpanzee of unknown provenience at the Museum of 

Comparative Zoology (Harvard University) and adult male gorilla from the Cincinnati 

Zoo at the University of Michigan Museum of Zoology.  

 The tibia of adult wild-shot primates museum specimens were studied of the 

following species: Pan troglodytes (n=52), Pan paniscus (n=4), Gorilla gorilla gorilla 



 185

(n=44), Gorilla gorilla beringei (n=22); Pongo pygmaeus (n=36), Hylobates lar (n=40), 

Symphalangus syndactylus (n=8); Papio spp. (n=35); Mandrillus sphinx (n=10); 

Theropithecus gelada (n=5); Macaca fascicularis (n=5); Macaca nemestrina (n=6); 

Nasalis larvatus (n=37); Alouatta palliata (n=20); Ateles spp. (n=23); Brachyteles 

arachnoides (n=1); Lagothrix lagotricha (n=16); Cebus capucinus (n=19). The relative 

numbers of males and females are listed in Table 5.1. The human tibiae were from the 

9th-12th century PaleoIndian Libben population housed at Kent State University (Lovejoy 

et al., 1977), and the Hamann-Todd collection at the Cleveland Museum of Natural 

History. The non-human primates were studied at the Cleveland Museum of Natural 

History, Field Museum, American Museum of Natural History, National Museum of 

Natural History, Museum of Comparative Zoology (Harvard), and Peabody Museum 

(Yale).  

 Twenty-nine fossil tibiae were studied (Table 5.2). Original fossils were examined 

at the Uganda National Museum, Kenya National Museum, and the Department of 

Anatomy at the University of Witwatersrand in South Africa. High-quality research casts 

of tibiae from the Ethiopian hominin A. afarensis were studied courtesy of the Cleveland 

Museum of Natural History and the University of Michigan Department of 

Anthropology.  

 

Comparative morphology of PTTL 

 The area of the posterior tibiotalar ligament was measured on four macaques 

(Macaca mulatta) and 10 baboons (Papio anubis). The baboons were between two-three 

years old, and thus still had unfused epiphyses on the distal fibula and tibia. They 
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weighed between 6.0-8.4 kg with an average of 7.2 kg. The macaques were adults, 

approximately 10 kg in mass. Additionally, the cross-sectional area of the posterior 

tibiotalar ligament was measured on an adult male chimpanzee and an adult male lowland 

gorilla that weighed approximately 225 kg. The length, width, height, and anatomical 

origin and insertion of the PTTL was measured using digital calipers at the midpoint of 

the ligament’s length. Mkandawire et al. (2005) have found that the caliper technique can 

underestimate the ligament cross-sectional area. The data presented in Mkandawire et al. 

(2005) suggest that the actual cross-sectional area of the PTTL can be estimated using the 

equation for the area of an ellipse. Dissection of five human cadavers confirmed that the 

shape of human ankle ligaments is roughly the same as the shape of non-human primate 

ligaments and this method was therefore used to calculate the cross-sectional area of 

ligaments in this study. The cross-sectional area of the posterior tibiotalar ligament in 

humans was taken from Sigeler et. al. (1988), and from the five dissected human 

cadavers mentioned above.  

 Because this study samples a range of body masses, the relative strength of the 

posterior tibiotalar ligament was assessed by dividing the square root of the cross-

sectional area of the ligament by the cube root of the mass of the animal.  

 In addition to measuring the cross-sectional area, the maximum range of 

dorsiflexion between the foot and the tibial shaft was measured before and after severing 

the posterior tibiotalar ligament in human cadavers (n=5) and the gorilla (n=1).  

 

Ligament biomechanics 
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Figure 5.5. Anatomy of baboon (Papio anubis) ankle. 

 
Figure 5.5. Dissected baboon ankle in posterior view. Labeled are the tibia, fibula, talus, 
and calcaneus, and the three ligaments examined in this study: PTTL (posterior tibiotalar 
ligament), PTaFL (posterior talofibular ligament), and CFL (calcaneofibular ligament).  
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When the ligaments were ready for testing, the limbs were thawed for 24 hours at 

room temperature (~21˚C). Dissections were performed on the right limbs unless the 

ligaments were damaged during the dissection or tensile mounting, in which case the left 

limb was used. The calcaneofibular ligament (CFL), posterior talofibular ligament 

(PTaFL), and posterior tibiotalar ligament (PTTL) were carefully isolated and all 

surrounding tissue removed (Figure 5.5). Attempts were made to locate the ATaFL. The 

length, width, height, and anatomical origin and insertion of the three ligaments were 

measured using digital calipers. As mentioned above, Mkandawire et al (2005) have 

found that the caliper technique can underestimate the ligament cross-sectional area and 

that the actual cross-sectional area of the CFL can be approximated using the equation for 

the area of a rectangle; the PTTL by using the equation for the area of an ellipse; and the 

PTaFL by averaging the area of a rectangle with the average of an ellipse.  

Mounting ligaments and testing the strength and stiffness can be difficult to 

achieve without slippage. Tests were first performed on pig ankle ligaments to obtain the 

best mounting protocol. Bone-ligament-bone complexes were prepared by dissecting the 

calcaneus and talus from the rest of the hindfoot and by separating the tibia and fibula 

from one another by cutting the anterior and posterior tibiofibular ligaments, the 

interosseous tissue, and the ligaments anchoring the proximal tibiofibular joint capsule. 

The shafts of the fibula and tibia were cut with a power rotary tool to properly mount the 

bone-ligament-bone specimens in the tensiometer. The bones were not potted, but instead 

were cut along the cortical portion of the shafts to form T-shaped regions of bone that 

were subsequently mounted proximally in the Instron clamps while the talus or calcaneus  
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Figure 5.6. Testing biomechanical properties of baboon posterior tibiotalar ligament. 

 
Figure 5.6. Mounting protocol to test the material properties of the posterior tibiotalar 
ligament (PTTL). Proximally, the bone-ligament-bone complex is clamped into the 
Instron apparatus and resists slipping downward by the T-shaped cortical bone. Distally, 
the tibia is cut along the medial malleolus such that it and the posterior tibiotalar ligament 
can fit between the Instron clamps without interference. The bone-ligament-bone 
complex is held in place distally by the superior and medial sides of the talus itself.  



 190

was mounted distally to the Instron clamps (Figure 5.6). Slippage was minimal as the 

force-displacement graphs for each ligament were consistent both within a test and 

between tests. When not being dissected, cut, mounted, or tested, the ligaments were 

wrapped in a moist paper towel.    

Care was taken to cut and mount the bone-ligament-bone complex along the long 

axis of the ligament. The strength and stiffness of the ligaments were tested in an Instron 

4301 tensile test machine using a load cell of 10 kN. Force was applied to the ligament at 

a low rate of 2.54 mm/min until failure. This rate corresponds to between 15% (CFL) and 

40% (PTTL) of the total length of the ligament per minute which is similar to the 12% 

(CFL) to 27% (PTTL) of total length of the ligament per minute used to test humans 

(Siegler et al., 1988). Output of force and displacement throughout the test was recorded 

1 data point per second in addition to the maximum load and displacement at failure 

(Figure 5.7). The stress (force/cross-sectional area) and strain (displacement/ligament 

length) were calculated from the data in the output graphs as was the Young’s elastic 

modulus (stress/strain) and the energy to yield (Nmm). The mode of failure (bony 

avulsion or ligament tear) and the site of failure were recorded for each ligament.  

Because there were a limited number of baboons available, the ligaments were not 

tested as isolated structures. This did not affect the PTTL ligament as it was the only 

structure tested on the medial side of the ankle. However, the CFL and PTaFL have a 

common origin on the distal fibula, though when one ligament was mounted, the other 

was placed in a position perpendicular to the tensiometer grips and thus was not under a 

tensile force. For half of the bone-ligament-bone complexes, the CFL was tested first; for 

the other half, the PTaFL was tested first. The difference in strength or stiffness was not 
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Figure 5.7. Force-elongation graph of baboon posterior tibiotalar ligament. 

 
Figure 5.7. An example of the force-elongation graph produced during the testing of a 
posterior tibiotalar ligament (PTTL). The x-axis is the change of original length of the 
ligament and the y-axis is the total load. In this example, after about 2.5 mm of 
elongation, the ligament abruptly failed at a load of approximately 145 N.  
 

different whether the ligament was tested first or second. However, if the ligament failed 

by pulling the distal fibular epiphysis from the diaphysis, it was not possible to test the 

second ligament. This occurred three times. Ligament failure or failure of the bone along 

the epiphyseal plate prior to a 10N load occurred for five CFLs and two PTaFL. It is 

assumed that in cases of failure at such a low load, the bone was cut too thin during 

mounting preparation. Data are thus reported for the remaining 10 PTTLs, eight PTaFLs, 

and six CFLs.  

 

Skeletal morphology 
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 The attachment for the posterior tibiotalar ligament was measured on 379 tibia 

from wild-shot adult non-human primate specimens (Table 5.1), and 69 human adult 

human tibia representing two different populations. All of the hominoid genera (Homo, 

Pan, Gorilla, Pongo, Hylobates, Symphalangus) are represented, as are primarily 

terrestrial (Papio, Mandrillus, Theropithecus, Macaca nemestrina), and more arboreal 

(Nasalis, Macaca fascicularis) cercopithecines. Platyrrhines are represented by the 

ateline genera (Ateles, Alouatta, Brachyteles, Lagothrix) and the arboreal quadruped 

Cebus. Specimens were measured at the Cleveland Museum of Natural History, Field 

Museum (Chicago), American Museum of Natural History (New York), National 

Museum of Natural History (Washington D.C.), Museum of Comparative Zoology 

(Harvard), and Peabody Museum (Yale). The two human populations are the 9th-12th 

century PaleoIndian Libben population (Lovejoy et al., 1977) housed at Kent State 

University (n=45), and the Hamann-Todd collection at Cleveland Museum of Natural 

History (n=24). 

Photographs of the tibia were taken in lateral view with a Nikon D100 digital 

camera. The bone was positioned flat on its medial side such that the anterior or posterior 

edges of the medial malleolus were not visible (Figure 5.8). Images were imported into 

Image J and two measures were taken. First, the shape of the intercollicular groove was 

assessed by measuring the angle that the posterior edge of the intercollicular groove 

forms with the long axis of the tibia using the angle tool in Image J. This was measured 

by drawing a line from the posterior colliculus to the deepest point of the intercollicular 

groove and measuring the angle that this line makes with long axis of the tibia. A second 

measure was taken to quantify the size of the intercollicular groove. Using Adobe 
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Table 5.1. Extant tibiae measured in this study. 
Family Species Male Female Sex 

unknown 
Total 

Hominoid Homo sapiens 25 34 10 69 
 Pan 

troglodytes 
20 21 11 52 

 Pan paniscus 2 1 1 4 
 Gorilla 

gorilla gorilla 
23 19 2 44 

 Gorilla 
gorilla 
beringei 

15 6 1 22 

 Pongo 
pygmaeus 

12 19 5 36 

 Hylobates lar 19 20 1 40 
 Symphalangus 

syndactylus 
2 5 1 8 

Cercopithecoid Papio spp. 18 5 12 35 
 Mandrillus 

sphinx 
3 4 3 10 

 Theropithecus 
gelada 

3 2 0 5 

 Macaca 
fascicularis 

3 2 0 5 

 Macaca 
nemestrina 

4 2 0 6 

 Nasalis 
larvatus 

18 19 0 37 

Platyrrhine Alouatta 
palliata 

11 7 2 20 

 Ateles spp. 12 8 3 23 
 Brachyteles 

arachnoides 
0 0 1 1 

 Lagothrix 
lagotricha 

8 5 3 16 

 Cebus 
capucinus 

10 9 0 19 

 

Photoshop, the medial malleolus was cropped from the rest of the tibia, and imported into 

Image J. Using the line tool, a curve was traced along the anterior edge of the medial 

malleolus, following the shape of the bone. This line was then inverted, and placed along 

the posterior edge of the malleolus to represent what a “complete” medial malleolus  
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Figure 5.8. Comparative morphology of anthropoid medial malleoli. 

 
Figure 5.8. Distal tibia in lateral view of (from left to right) Papio anubis, Pongo 
pygmaeus, Gorilla gorilla gorilla, Pan troglodytes, and Homo sapiens. All are from adult 
right tibia. Notice the large intercollicular groove on the baboon and the human and more 
rounded medial malleoli on the great ape tibia.  
 

without an intercollicular groove would look like. A threshold tool was then used to 

convert all of the bone to white pixels, and the background to black pixels. A line was 

drawn from the posterior colliculus across the medial malleolus, parallel to most superior 

junction of the medial malleolus with the distal tibia. The region inferior to this line, 

including the portion representing the intercollicular groove was outlined and the 

percentage of the area of interest filled with bone was calculated and subtracted from 

100%. This value represents the area of the intercollicular groove. The size of the 

intercollicular groove was not measured relative to the size of the entire medial malleolus 

because the relative height of the medial malleolus varies between primate taxa (Chapter 

3). Significant differences among primate species for this measure were assessed using a 

one-way ANOVA and the post hoc Tukey honestly significantly different (HSD) test.  

 These same measures were taken on nine fossil hominin, eight fossil catarrhine or 

hominoid, and 13 fossil cercopithecoid distal tibiae listed in Table 5.2. These specimens 

had a complete enough medial malleolus for the measurements described above to be 

accurately taken. The medial malleolus is not present or is damaged on the Miocene  
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Table 5.2. Fossil tibiae measured in this study. 
Accession 
number 

Geological 
age 

Family  Taxon Original or cast 

NAP I’58 19.51,2 Hominoid Proconsul 
major3,5 

Original.  

BUMP 764 19.51,2 Catarrhine ? Original. 
KNM-LG 583 19.54 Hominoid? 

Catarrhine? 
?P. africanus5 

?Dendropithecus 
macinnesi3 

Original. 
National 
Museums of 
Kenya (NMK) 

KNM-ER 1939 17.86 Hominoid P. nyanzae3, 7 Original. NMK 
KNM-RU 3589 17.86 Hominoid P. heseloni3 Original. NMK 
KNM-RU 2036 17.86 Hominoid P. heseloni3 Original. NMK 
KNM-BG 
35250 

~158 Hominoid Nacholapithecus 
kerioi9 

Original. NMK 

KNM-MB 
11973 

14-1510 Cercopithecoid Victoriapithecus 
macinnesi11 

Original. NMK 

A.L. 333-6 3.212 Hominin A. afarensis Cast. CMNH 
A.L. 333-7 3.212 Hominin A. afarensis Cast. CMNH 
A.L. 288-1 3.1812 Hominin A. afarensis Cast. CMNH 
StW 358 2.6-2.813 Hominin A. africanus?15,18 Original. 

Univerisity of 
Witwatersrand 

StW 567 1.4-1.713 Hominin Homo erectus2,21 Original. Wits 
KNM-ER 1500 1.914 Hominin P. boisei16, 18 Original. NMK 
KNM-ER 2596 1.914 Hominin? 

Cercopithecoid?
Hominin 22 
Cercopithecoid? 

Original. NMK 

KNM-ER 1481 1.914 Hominin Homo habilis 18,19 
Homo erectus20 

Original. NMK 

KNM-WT 
15000 

1.614, 17 Hominin Homo erectus17 Original. NMK 

KNM-ER 1542 1.9-2.114, 24 Cercopithecoid Rhinocolobus 
turkanaensis23 

Original.NMK.  

KNM-ER 
45613 

1.9-2.114, 24 Cercopithecoid ?R. turkanaensis Original.NMK.  

KNM-ER 
40443 

1.9-2.114, 24 Cercopithecoid Theropithecus 
oswaldi 

Original.NMK.  

KNM-ER 3823 1.9-2.114, 24 Cercopithecoid T. oswaldi Original.NMK.  
KNM-WT 
16875 

1.4-2.124 Cercopithecoid T. oswaldi Original.NMK.  

KNM-WT 
16755 

1.4-2.124 Cercopithecoid T. oswaldi Original.NMK.  

KNM-ER 3877 1.6-1.914, 24 Cercopithecoid T. oswaldi Original.NMK.  
KNM-ER 5474 1.6-1.6414, 24 Cercopithecoid T. oswaldi Original.NMK.  
KNM-ER 597 1.4-1.614, 24 Cercopithecoid T. oswaldi Original.NMK.  



 196

KNM-ER 866 1.4-1.614, 24 Cercopithecoid T. oswaldi Original.NMK.  
KNM-ER 5491 1.4-1.614, 24 Cercopithecoid T. oswaldi Original.NMK.  
KNM-OG 1109 >0.7424 Cercopithecoid T. oswaldi Original.NMK.  
1Bishop, 1969; 2MacLatchy et al., 2006; 3Rafferty et al., 1995; 4Pickford and Andrews, 
1981; 5Harrison, 1982; 6Drake et al., 1988; 7Le Gros Clark, 1952; 8Sawada et al., 1998; 
9Ishida et al., 1999; 10Feibel and Brown, 1991; 11Harrison, 1989; 12Walter et al., 1994; 
13Kuman and Clarke, 2000; Deloison, 2003; Pickering et al., 2004; 14Feibel et al., 1989; 

15McHenry and Berger, 1998; 16Grausz et al., 1988; 17Walker and Leakey, 1993; 
18McHenry, 1994; 19Trinkaus, 1984; 20Kennedy, 1983; 21Curnoe and Tobias, 2006; 
22Leakey and Walker, 1985; 23Leakey, 1982; 24Krentz, 1993. 
 

tibiae KNM-MV 2 and KNM-RU 5872, and on Plio-Pleistocene hominins StW 181, StW 

389, StW 515, and OH 35. There is some damage to the inferior tip of the medial 

malleolus in the Miocene Victoriapithecus fossil tibia KNM-MB 11973 and the 

unpublished catarrhine distal tibia BUMP 764 from the Napak site of northeastern 

Uganda. Measurements on these fossils should be treated as estimates. There is sufficient 

crushing to the inferior end of the hominin tibia from Australopithecus anamensis KNM-

KP 29285 to preclude reliable estimates of the angle or area of the intercollicular groove. 

The left tibia of KNM-BG 32520 Nacholapithecus is severely distorted; however, the 

right tibia is not as badly distorted (thought still slightly) and the measurements reported 

are from this right distal tibia. Measurements were taken on original fossils from the 

Kenya National Museum in Nairobi, Kenya, the Department of Anatomy at the 

University of Witwatersrand, and the Uganda National Museum. Measurements of three 

Australopithecus afarensis distal tibia were taken on high quality research casts (A.L. 

288-1, A.L. 333-6, A.L. 333-7) at the Cleveland Museum of Natural History and 

University of Michigan Department of Anthropology.  
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Results 

 

Comparative morphology of PTTL 

 The posterior tibiotalar ligament originated in the intercollicular groove between 

the anterior and posterior colliculi and inserted on the medial aspect of the talus in a wide 

area inferior to the articular facet for the medial malleolus and anterior to the medial 

tubercle for all primates dissected. In macaque monkeys (n=4), the ligament was 63.0 

mm2 ± 13.8 mm2 in cross-sectional area. In baboons (n=10), the posterior tibiotalar 

ligament had a cross-sectional area of 33.5 mm2 ± 5.0 mm2. The gorilla (n=1) had a 

ligament that was 157.1 mm2 in cross-sectional area, and the chimpanzee (n=1) ligament 

was 31.4 mm2 in cross-sectional area. Siegler et al. (1988) found that the human posterior 

tibiotalar ligament has a cross-sectional area of 141.9 mm2 ± 99.2 mm2, whereas the 

human cadavers measured (n=5) in this study had a larger average cross-sectional area of 

212.6 mm2 ± 65.0 mm2, although the ranges from the two studies overlap. Because the 

Siegler et al. (1988) study measured 20 human cadavers and includes mass estimates of 

the humans, those results are used for comparative purposes throughout the rest of this 

chapter. 

 The cross-sectional area of the posterior tibiotalar ligament is known for each of 

the individual primates in this study; however, body mass is not. Therefore, a measure of 

cross-sectional area relative to body mass can only be calculated as an average and 

cannot be statistically analyzed for significance. However, trends can be observed (Table 

5.3). The ratio of the square root of the cross-sectional area of the posterior tibiotalar  
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Table 5.3. Relative size of the posterior tibiotalar ligament in primates.  
Species n Area of PTTL 

(mm2) 
Body mass 
(kg) 

(PTTL 
area)(1/2)                  

(Body 
mass)(1/3) 

Source 

Homo sapiens 20 
 
5 

141.9 ± 99.2 
 
212.6 ± 65.0 

69.1 kg ~2.9 Siegler et al., 
1988 
This study 

Pan 
troglodytes 

1 31.4 33.7-42.7 kg 1.6-1.7 This study 

Gorilla gorilla 1 157.1 ~225 kg 2.1 This study 
Papio anubis 10 33.5 ± 5.0 6.0-8.4 kg 2.9-3.2 This study 
Macaca 
mulatta 

4 63.0 ± 13.8 8.8-11.0 3.6-3.9 This study 

 

ligament to the cube root of the mass of the animal is approximately 3.6-3.9 in macaques, 

2.9-3.2 in baboons, 2.9 in humans, 2.1 in the gorilla, and 1.6-1.7 in the chimpanzee.  

 

Ligament biomechanics 

The largest ankle ligament in baboons is the posterior tibiotalar ligament (10.67 

mm2) followed by the posterior talofibular ligament (6.14 mm2), and the calcaneofibular 

ligament (1.25 mm2). As in humans, the posterior tibiotalar ligament is also the strongest, 

failing at a load of 141.8 N ± 41.0 N (range 60 N- 210.7 N) after a displacement of 3.4 

mm ± 1.2 mm (range 1.3 mm- 4.5 mm). In comparison, the calcaneofibular ligament 

failed at a load of 55.8 N ± 43.2 N (range 10 N-120 N) after a displacement of 3.6 mm ± 

0.9mm (range 2.2 mm- 4.8 mm) while the posterior talofibular ligament failed at a load 

of 58.7 N ± 19.1 N (range 30.9 N- 85 N) after a displacement of 3.2 mm ± 1.4 mm (range 

1.7 mm- 5.8 mm). Baboons do not have an anterior talofibular ligament.  

The maximum stress withstood by the posterior tibiotalar ligament was quite 

similar in the baboon (11.1 ± 4.1 MPa) and in a human study (16.0 ± 15.1 MPa) (Siegler 
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et al., 1988). The strain calculated in the baboon demonstrated that it could stretch 

approximately half its original length before failure. This value is slightly higher than that 

reported in one human study (0.25 in Siegler et al. [1988]) and lower than another human 

study (2.1 in Attarian et al., [1985]). 

The elastic modulus of the posterior tibiotalar ligament in the baboon is 28.3 ± 

11.0 MPa. Although lower than the average value in humans, it is still within a single 

standard deviation of the human mean 99.54 ± 79.32 MPa (Siegler et al., 1988).  

 

Skeletal morphology 

 The average angle that the posterior colliculus formed with the long axis of the 

tibia differed significantly between humans and all other primate species (p<0.01 for all 

comparisons) (Figure 5.9). The angle was statistically identical between the following 

groups: terrestrial cercopithecoids (Papio, Mandrillus, Theropithecus, Macaca 

nemestrina) and cebus (p=0.43), Gorilla (p= 0.70) and hylobatids (p=0.62); Gorilla and 

hylobatids (p=1.0), Pan (p=0.72), and arboreal cercopithecoids (Nasalis and Macaca 

fascicularis) (p=0.05); hylobatids and Pan (0.87), and arboreal cercopithecoids (p=0.13); 

arboreal cercopithecoids and Pan (p=0.90) and Pongo (p=0.16); Pongo and Atelines 

(p=0.96). There were no differences between the Ateline genera (Ateles, Alouatta, 

Brachyteles, and Lagothrix). There were no differences between males and females for 

any of the species examined. Thus, the angle that the posterior colliculus forms with the 

long axis of the tibia is the most acute in humans, and most obtuse in orangutans and 

New World Atelines. 
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Figure 5.9. Angle of intercollicular groove in extant anthropoids 
 

 
Figure 5.9. The angle that the intercollicular groove forms with the long axis of the tibia 
is graphed on the y-axis. Box and whisker plots show the median value (black line), 
interquartile ranges (blue/gray boxes) and full range of values (whiskers). Outliers are 
represented as circles. This angle is most acute in Homo sapiens and the terrestrial 
cercopithecoids and Cebus. The angle gradually becomes more obtuse in species that are 
more arboreal and more adapted for bouts of vertical climbing (African apes, Pongo, and 
atelines).  
 

 The area encompassed by the posterior tibiotalar ligament also differed between 

the different primate genera studied in a manner quite similar to that observed for the 

intercollicular angle (Figure 5.10). Statistically identical values were found for the 

following: Homo sapiens and terrestrial cercopithecoids (p=0.33) and Cebus (p=0.15); 

Cebus and Gorilla (p=0.88) and hylobatids (Hylobates and Symphalangus) (p=0.61); 

Gorilla and hylobatids (p=0.99) and Pan (p=0.07); Pan and hylobatids (p=0.49) and  
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Figure 5.10. Area of intercollicular groove in extant anthropoids. 

 
Figure 5.10. The area carved out of the medial malleolus by the intercollicular groove 
relative to the total area of the medial malleolus is a proxy for the size of the posterior 
tibiotalar ligament and is graphed on the y-axis. Box and whisker plots show the median 
value (black line), interquartile ranges (blue/gray boxes) and full range of values 
(whiskers). Outliers are represented as circles. The area is large in terrestrial monkeys 
and humans, and becomes gradually less substantial in the more arboreal monkeys, apes, 
and atelines.  
 
 
arboreal cercopithecoids (p=1.0); and arboreal cercopithecoids and the hylobatids (p= 

0.33). Males and females had statistically identical areas of the posterior tibiotalar 

ligament in all of the species studied. The area is largest in humans and the terrestrial 

quadrupeds, and smallest in orangutans and the ateline monkeys. 

 

Morphology of fossil catarrhines from the Miocene 
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Figure 5.11. Comparative morphology of Miocene catarrhine medial malleoli. 

 
Figure 5.11. Eight relatively complete distal tibia from catarrhines of the early to middle 
Miocene in lateral view. These are either right tibiae or have been mirrored to represent 
the right side. The tibiae have been scaled to similar sizes to better compare 
morphologies. Across the top are four tibiae thought to belong to the genus Proconsul 
(NAP I’58, KNM-RU 1939, KNM-RU 3589, KNM-RU 2036). Note the very similar 
morphology to the medial malleolus. Across the bottom is an unassigned distal tibia from 
Napak, Uganda (BUMP 764), a possibly Dendropithecus specimen from Legetet, Kenya 
(KNM-LG 583), Victoriapithecus (KNM-MB 11973), and the right tibia from 
Nacholapithecus KNM-BG 35250.  
 

The four purported Proconsul distal tibia from the Miocene deposits of Napak 

(NAP I’58) and Rusinga Island (KNM-RU 1939, KNM-RU 3589, KNM-RU 2036) are 

strikingly similar in the morphology of the medial malleolus. These fossils share a 

distinct morphology in which the posterior colliculus bulges posteriorly and slightly 

inferiorly (Figure 5.11). There are some Macaca nemestrina tibiae with a similar 

morphology. The angle formed between the posterior colliculus and the long axis of the  
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Figure 5.12. Angle of intercollicular groove in Miocene catarrhines. 

 
Figure 5.12. Box and whisker plots of the intercolliculr groove angle show the median 
value (black line), interquartile ranges (blue/gray boxes) and full range of values 
(whiskers). Outliers are represented as circles. The angle of the intercollicular groove is 
quite low in specimens assigned to Proconsul and Nacholapithecus and higher in the 
Dendropithecus and Victoriapithecus Miocene tibia, and in the Pleistocene Rhinocolobus 
specimens. The low angle in the Miocene specimens and in the Pleistocene 
Theropithecus fossils may reflect increased terrestriality whereas the higher angle may 
reflect an increase in arboreal activity.  
 

bone is 102.8˚, 91.4˚, 89.1˚, and 93.0˚ for NAP I’58, RU 1939, RU 3589, and RU 2036 

respectively (Figure 5.12). Although an estimate, the smaller Napak fossil BUMP 764 

also has a low angle. The low angle formed by the posterior collicular is also present in 

the later Miocene Nacholapithecus tibia KNM-BG 35250, 81.9˚. For this measure, these 

fossils are most like the genus Cebus and the terrestrial cercopithecoids, though there is 

enough variation in arboreal cercopithecoids, Hylobates and the African apes to  
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Figure 5.13. Area of intercollicular groove in Miocene catarrhines. 
 

 
Figure 5.13. Box and whisker plots of the intercollicular area show the median value 
(black line), interquartile ranges (blue/gray boxes) and full range of values (whiskers). 
Outliers are represented as circles. Similar to what is illustrated in Figure 5.12, the area 
formed by the intercollicular groove is relatively high in specimens assigned to Proconsul 
and Nacholapithecus and lower in the Victoriapithecus tibia, and in the Pleistocene 
Rhinocolobus specimens. The high area in the Miocene specimens and in the Pleistocene 
Theropithecus fossils may reflect increased terrestriality whereas the reduced area for the 
posterior tibiotalar ligament may reflect a weaker ligament and an increase in arboreal 
activity.  
 

encompass these values. In contrast, KNM-LG 583 and the later Victoriapithecus fossil 

KNM-MB 11973 have a more obtuse angle of 114.8˚ and 115.3˚ respectively. They are 

most like the arboreal cercopithecoids for this measure.      

The area encompassed by the intercollicular groove is high and terrestrial 

cercopithecoid-like for all of the Miocene fossils except perhaps for BUMP 764 and the 
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Victoriapithecus distal tibia KNM-MB 11973 (Figure 5.13). The area measured is 31.9% 

for NAP I’58; an estimated 22.5% for BUMP 764; 33.0% for KNM-RU 583; 43.1%, 

37.6%, and 34.0% for RU 1939, RU 3589, and RU 2036 respectively; 37.9% for KNM-

BG 32520; and only 20.3% for KNM-MB 11973. 

 

Morphology of fossil cercopithecoids from the Pleistocene 

 The two purported Rhinocolobus tibia have medial malleoli similar to the arboreal 

Nasalis, though one specimen (KNM-ER 1542) has a more poorly developed 

intercollicular groove than the other fossil, KNM-ER 45613. The angle formed by the 

intercollicular groove is 117.4˚ in ER 1542 and 118.2˚ in ER 45613, though the area 

formed by the groove is 8.2% in the former and 25.6% in the latter. In this respect, ER 

45613 is more like the large Theropithecus fossil tibia and may actually belong to that 

taxa.  

 Ten Theropithecus tibiae were studied and all of the fossils were quite similar to 

one another, and all cluster within the distribution occupied by the modern terrestrial 

quadrupeds Papio, Mandrillus, Theropithecus, and Macaca nemestrina (Figure 5.12). 

The average angle formed by the intercollicular groove is 105.9˚ ± 4.1˚ (range 98.0˚-

112.2˚), and the area occupied by the intercollicular groove on the medial malleolus is 

33.0% ± 2.5% (range 29.5%-35.9%). 

 

Morphology of fossil hominins (Figure 5.14) 

 Unfortunately, the oldest hominin tibia KNM-KP 29285 from the 4.12 mya A. 

anamensis has damage to the most inferior aspect of the medial malleolus and the shape  
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Figure 5.14. Comparative morphology of medial malleolus in fossil hominins. 

 
Figure 5.14. Ten hominin distal tibiae measured in this study shown in lateral view. 
These are all right tibiae or have been mirrored to represent the right side. The tibiae have 
been scaled to roughly the same size. Across the top are tibiae from Australopithecus, 
with KNM-KP 29285 from A. anamensis, three tibiae from A. afarensis (AL 288-1, AL 
333-6, AL 333-7), and StW 358 is from A. africanus. Across the bottom are latter, Plio-
Pleistocene tibiae. KNM-ER 2596, KNM-ER 1500, and KNM-ER 1481 are all 1.9 mya 
and their taxonomic affinity is unclear though it is thought that ER 1500 may be from P. 
boisei while ER 1481 may be from Homo. StW 567 is from later deposits in the 
Sterkfontein cave and is thought to be from Homo. KNM-WT 15000 is from Homo 
erectus. KNM-KP 29285 is the oldest distal tibia, 4.12 mya from A. anamensis. The 
medial malleolus is crushed inferiorly and reliable measurements on the intercollicular 
groove were not possible.  
 
and size of the intercollicular groove cannot be accurately assessed. However, three 

complete distal tibiae from A. afarensis are preserved. A.L. 288-1 has the most modern 

human-like medial malleolus of any hominin fossil assessed. The intercollicular groove 

forms an angle of 95.6˚ with the long axis of the shaft and occupies 27.7% of the medial 

malleolus. These values are quite similar to the human means of 93.8˚ ± 9.8˚ and 30.7% ± 



 207

11.1% respectively. The remaining hominin tibia are between the human range and the 

African ape range of 112.9˚ ± 10.1˚ and 21.0% ± 6.4% for these two measures. 

A.L. 333-6 and A.L. 333-7 have similar intercollicular angles of 106.6˚ and 

108.2˚ and the areas occupied by the intercollicular groove are 28.2% and 23.9% 

respectively. The A. africanus distal tibia StW 358 is quite similar to the Hadar remains. 

The intercollicular angle is 105.6˚, while the groove occupies 24.5% of the area of the 

collicular region of the medial malleolus. The possibly P. boisei (Grausz et al., 1988) 

distal tibia from the Koobi Fora KNM-ER 1500 has an angle of 91.2˚ and an area for the 

posterior tibiotalar ligament occupying 23.8% of the malleolar region. The possibly 

Homo distal tibia from Koobi Fora KNM-ER 1481 has an angle of 110.4˚ and an area of 

23.4%. The KNM-ER 2596 distal tibia from the Koobi Fora deposits has an angle of 

104.7˚ but a strikingly small area for the posterior tibiotalar ligament occupying only 

9.4% of the medial malleolus. StW 567, a potentially Homo distal tibia from Member 5 

deposits in the Sterkfontein cave has a medial malleolus with dimensions very similar to 

the other Early Pleistocene hominins with an angle of 103.5˚ and an area of 22.3%. 

Finally, the KNM-WT 15000 distal tibia forms an angle between the intercollicular 

groove and the long axis of the tibia of 93.1˚ and has an intercollicular area of 29.1% of 

the total collicular region of the medial malleolus.  

 

Discussion 

 Extreme dorsiflexion is an adaptation for bringing a climbing ape or ateline closer 

to the substrate during vertical climbing bouts (Chapter 2). Because the posterior 

tibiotalar ligament is primarily a restrictor of dorsiflexion in humans, it was hypothesized 
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that the size and attachment area for this ligament would be more poorly developed in 

vertically climbing apes than in the more terrestrial cercopithecoids and humans. Testing 

this hypothesis required examining whether the ligament had the same biomechanical 

properties in the human ankle and the ankle of a non-human primate.  

 The hypothesis that there are no differences in the biomechanical properties of the 

human posterior tibiotalar ligament and the same ligament from a non-human primate 

could not be refuted. As in humans (Close, 1956; Attarian et al., 1985; Siegler et al., 

1988; Sarrafian, 1993; Klein, 1994; Milner and Soames, 1998; Beumer et al., 2003), the 

baboon posterior tibiotalar ligament is both the relatively largest and the strongest in the 

ankle complex. Direct comparisons with the human ligament demonstrate that the 

maximum stress and strain of the ligament prior to failure is quite similar in the baboon 

posterior tibiotalar ligament (Table 5.4). Similarly, the Young’s modulus calculated for 

the baboon posterior tibiotalar ligament is within a standard deviation of the human mean 

for this measure (Table 5.4). Because the biomechanical properties of the ligament are 

probably conserved between humans and baboons, the size and orientation of the origin 

and attachment points for this ligament are likely to be functionally informative.    

The null hypothesis of no difference in the morphology of the medial malleolus between 

primates that differ in their locomotion was not supported. Instead, vertically climbing 

apes and atelines have weakly developed regions of attachment for the PTTL, whereas 

humans and terrestrial cercopithecoids have much larger areas of attachment for this 

ligament on the medial malleolus. Furthermore, in the available primate cadavers, the 

PTTL is larger relative to body mass in baboons, macaques, and humans than what can 

be found in the chimpanzee or gorilla. Additional data on the size of the PTTL, especially 
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Table 5.4. Biomechanical properties of posterior tibiotalar ligament in baboon and human 
ankle. 
 Baboons (this study) Humans 
Maximum force (N)  141.8 ± 41.0 1713.8 ± 69.3 (n=6)  

2467 ± 289 (n=20)  
3244 ± 71 (n=3)  
4446 ± 51 (n=10) 
 

Stress (Mpa) 11.1 ± 4.1 215.99 ± 15.07 
Strain (mm/mm) 0.53 ± .16 12.10 ± .23 

20.25 ± .13 
E (MPa) 28.3 ± 11.0 299.54 ± 79.32 
Energy to yield point (Nmm) 252.8 ± 121.0 1747.0 ± 133.0 

2~508 
1 Attarain et al., 1985; 2 Siegler et al., 1988; 3 Nigg et al., 1990; 4 Beumer et al., 2003 
 

in apes, will be necessary to test this hypothesis with any statistical rigor. 

In addition to the area of attachment, the point of attachment of the PTTL in the 

intercollicular groove of the medial malleolus affects the function of the ligament, from 

one guiding motion in apes, to one restricting motion in cercopithecoids and humans. In a 

study of ligament biomechanics, Alexander and Bennett (1987) found that ligaments that 

attach near to the axis of rotation remain isometric through the entire range of motion of 

the joint, and thus they serve only to stabilize and guide joint motion rather than 

restricting it. However, ligaments that insert at a distance from the axis of rotation can 

become taut at the extremes of joint motion, and thus serve to restrict joint motion 

(Alexander and Bennett, 1987). Because it is known that the axis of rotation of the ankle 

runs roughly through the tip of the medial malleolus (Inman, 1976; Latimer et al., 1987; 

Lundberg et al., 1989), the PTTL attaches near the axis of rotation in species without a 

developed intercollicular groove, like apes and atelines. The function of the PTTL in 

these species is thus as an ankle stabilizer on the medial side. However, in humans and 

terrestrial cercopithecoids, the PTTL anchors in a well developed intercollicular groove, 
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at a distance from the axis of rotation, and thus the posterior fibers of this ligament 

become taut during extremes of dorsiflexion. The function of this ligament in these 

species is more of an inhibitor of dorsiflexion. 

There are two important caveats to these results. First, these data suggest that a 

weakly developed posterior tibiotalar ligament is not a vertical climbing adaptation per 

se. These data are some of the first in the talocrural joint to distinguish arboreal 

cercopithecoids from terrestrial cercopithecoids (Figures 5.6 and 5.7). In Chapter 3, it 

was found that the general morphology of the distal tibia and talus of a cercopithecoid, 

whether more terrestrial like Papio, or more arboreal like Nasalis, showed only subtle 

differences. However, the data reported here suggest that the posterior tibiotalar ligament 

is more strongly developed in terrestrial cercopithecoids, whereas more arboreal 

cercopithecoids have weakly formed intercollicular grooves and probably do not have a 

strong dorsiflexion restricting posterior tibiotalar ligament. Pleistocene genera 

Theropithecus and Rhinocolobus have distinct medial malleoli, suggestive of a more 

terrestrial and more arboreal life respectively (Figures 5.12 and 5.13). Fossils from the 

Miocene genus Proconsul are suggestive of a well developed posterior tibiotalar 

ligament, though these data should be considered in the context of the entire talocrural 

morphology. For example, while the morphology of the smaller Proconsul fossils are 

quite similar to modern terrestrial cercopithecoids, like Papio, the larger tibia from 

Proconsul major has morphologies suggestive of some degree of vertical climbing. It is 

thus noteworthy that the P. major tibia has a less strongly developed intercollicular 

region than the other Proconsul specimens, which have an intercollicular groove that 

advances to a more anterior region of the medial malleolus. The distal tibia from Legetet, 
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KNM-LG 583 is unlike the other Proconsul specimens in having a more obtuse 

intercollicular angle, and thus may be from another taxon such as Dendropithecus as 

suggested by Rafferty et al. (1995; contra Harrison, 1982). Additionally, the shape of the 

intercollicular groove in KNM-MB 11973 from Victoriapithecus is consistent with others 

who have suggested agility and at least some arboreality in this Miocene cercopithecoid 

(Harrison, 1989). These results suggest that a weakly developed posterior tibiotalar 

ligament is a morphology not only present in the ankle of the vertically climbing atelines 

and apes, but also in the arboreal cercopithecoids and primitive catarrhines. Dorsiflexion 

may be important in keeping the center of mass of arboreal cercopithecoids close to the 

substrate (Meldrum, 1991), though data on the morphology of the ankle is suggestive that 

arboreal cercopithecoids do not load their ankles in dorsiflexion any more than terrestrial 

cercopithecoids (Chapter 3), and when climbing, cercopithecoids flex at the midfoot 

rather than at the ankle (Chapters 2 and 7).  

Second, although the mean values of intercollicular area and angle are statistically 

distinct between vertically climbing apes and atelines and more terrestrial cercopithecoids 

and humans, tremendous variation can be found within a species or locomotor group. 

Although there are general trends that find terrestrial primates with a more developed 

intercollicular area, individuals can be found with poorly developed, ape-like 

intercollicular regions. Such overlap in morphology and variation within a species makes 

it difficult to interpret the size and function of the posterior tibiotalar ligament in isolated 

fossil tibia. However, although individual humans and baboons can be found with more 

ape-like morphology to the medial malleolus, it was unusual to find climbing apes or 

atelines with a morphology of the medial malleolus in the far human ranges (Figures 5.9 
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and 5.10). In other words, humans and baboons display medial malleoli suggestive of a 

poorly developed posterior tibiotalar ligament, but very few tibiae of apes or atelines 

have evidence for a strongly developed posterior tibiotalar ligament.  

Morphological variation in the talocrural joint is likely due to the fact that the 

posterior tibiotalar ligament is not the only anatomical element limiting or restricting 

dorsiflexion in the ankle. As discussed in Chapters 3 and 4, skeletal morphologies related 

to dorsiflexion restriction may include the depth of the articular surface of the tibia, and 

the overall geometry of the distal tibia. Shallow, anteroposteriorly shortened tibia have 

more capacity for dorsiflexion than deeply concave, anteroposteriorly prolonged tibia 

(Chapters 3 and 4). Therefore, these data on the posterior tibiotalar ligament should be 

interpreted in a framework that considers the complete morphology of the ankle. The 

shape of the hominin medial malleolus, falling essentially between the human and 

African ape distribution (except KNM-ER 2596), may be interpreted in isolation as 

reflecting an increase in dorsiflexion relative to modern humans (Figures 5.15 and 5.16). 

However, these tibiae also possessed deeply concave tibial articular surfaces, and 

demonstratively square-shapes to their distal ends. Both of these morphologies would 

limit extreme dorsiflexion (Chapter 4). Additionally, and perhaps most importantly to this 

discussion, the depth of the articular surface and the dimensions of the tibial surface of 

some hominin tibia are on the high end or even beyond the range of distribution found in 

modern humans (Chapter 4). Given these osteological elements that would prohibit 

extreme dorsiflexion in the hominin talocrural joint, the presence of a robust deltoid 

ligament may be superfluous. However, the morphology of KNM-ER 2596 suggests that 

this individual had a poorly developed posterior tibiotalar ligament and data from Chapter  
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Figure 5.15. Angle of intercollicular groove in fossil hominins. 

 
Figure 5.15. Box and whisker plots of the intercollicular groove angle show the median 
value (black line), interquartile ranges (blue/gray boxes) and full range of values 
(whiskers). Outliers are represented as circles. The angle formed by the intercollicular 
groove relative to the long axis of the tibia is higher in African apes than in modern 
humans. Some fossil tibia fall in the modern human range (AL 288-1, KNM-ER 1500, 
KNM-WT 15000) while the rest fall between the human and African ape distribution. 
This is discussed further in the text.  
 

4 suggest that other inhibitors of dorsiflexion are only weakly present in this specimen. 

Whether KNM-ER 2596 belongs to Rhinocolobus, a vertically climbing hominin, or to a 

pathological hominin is addressed in Chapter 4.  

Furthermore, the shape of the intercollicular groove of hominins as existing in the 

morphospace between the human and African ape distribution needs to be considered in 

more detail. In Chapter 4, it was found that known hominins have reduced foot abduction 

relative to African apes and possess a perpendicularly aligned tibia over the foot (except 



 214

Figure 5.16. Area of intercollicular groove in fossil hominins. 
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Figure 5.16. Box and whisker plots of the intercollicular area show the median value 
(black line), interquartile ranges (blue/gray boxes) and full range of values (whiskers). 
Outliers are represented as circles. The area for the posterior tibiotalar ligament is larger 
in humans than in the African apes, though there is considerable overlap in this 
measurement. All of the fossil hominin tibia fall within both the human and African ape 
range for this measure except for KNM-ER 2596 which is outside the human range for 
this measure and more closely resembles Pongo (see Figure 5.10). 
 

KNM-ER 2596). Both of these morphologies would severely hinder vertical climbing in 

an ape-like manner. Two potential climbing scenarios were proposed. The first 

hypothesized that hominins were placing their foot on the anterior aspect of the tree, and 

because they possessed a perpendicularly aligned tibia, only extreme dorsiflexion even 

beyond perhaps what African apes are capable of, would pull the hominin closer to the 

tree, thus reducing its climbing costs. For hominins climbing in this manner, an 

orangutan-like morphology to the medial malleolus is predicted (Figure 5.8). The second 
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scenario hypothesized that hominins were climbing with their feet against the side of the 

tree and their knees splayed laterally. A third scenario would posit the absence of 

climbing altogether in fossil hominins. Therefore, vertical climbing in hominins, with 

lower limb morphologies that already limit the joint motions adapted for ape-like 

climbing, would require even more exaggerated features related to climbing in other 

regions or anatomies. By possessing an “in-between” shape to the medial malleolus, 

hominins may not have possessed as strong a posterior tibiotalar ligament as possessed 

by modern humans, but they were moving away from the African ape condition and thus 

moving away from a morphology that allowed substantial dorsiflexion.  

This interpretation of the data is especially relevant for A.L. 288-1, which has 

been the focus of many of the debates about australopithecine locomotion (Stern and 

Susman, 1983; Susman et al., 1984; Latimer et al., 1987). The shape of the intercollicular 

groove on the medial malleolus of A.L. 288-1 is as similar to the modern human 

morphology as any of the other hominins studied, including the Homo erectus tibia 

KNM-WT 15000. Although there are African apes that have as much area devoted to the 

posterior tibiotalar ligament attachment on the medial malleolus as A.L. 288-1, few 

gorillas and no chimpanzees have an intercollicular angle as sharp. By having such an 

angle, the posterior fibers of the posterior tibiotalar ligament on A.L. 288-1 would have 

been quite far from the axis of rotation and would have resisted extreme dorsiflexion. 

These data suggest that this individual A. afarensis (Lucy) could not have dorsiflexed her 

ankle beyond 45˚ and therefore she could not have vertically climbed like a modern ape. 

Even if the other hominins studied had an increased capacity for dorsiflexion based on a 

more weakly developed posterior tibiotalar insertion, there is little evidence that these  
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Figure 5.17. Distal tibia of “Little Foot” StW 573.  

 
Figure 5.17. The Australopithecus sp. fossil StW 573, or “Little Foot”, preserves a 
relatively complete distal tibia. Although this author was not allowed to study this 
specimen, photographs of the fossil in lateral view suggest a very weakly developed 
attachment for the posterior tibiotalar ligament. This is discussed further in the text. 
Image reproduced from Deloison (2003).  
 

individuals actually loaded their ankles in this position of dorsiflexion (Chapter 4). Based 

on these and other morphologies of the lower limb, continued ape-like vertical climbing 

in hominins would have required that the morphology of the medial malleolus become 

even more ape-like, perhaps even orangutan-like, to facilitate the extreme dorsiflexion 
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needed to compensate for all of the other adaptations for bipedalism that maladapted the 

animal for climbing. Although I was unable to study the StW 573 “Little Foot” distal 

tibia, the only known published photograph of this specimen in lateral view (Deloison, 

2003) shows a strikingly orangutan-like shape to the medial malleolus (Figure 5.17). This 

weak attachment of the posterior tibiotalar ligament on the medial malleolus of the StW 

573 distal tibia is tantalizing and should be studied in more detail on the original 

specimen. 

 In addition to skeletal restrictors to dorsiflexion, the Achilles tendon has been 

suggested as a critical dorsiflexion inhibitor in modern humans (Costa et al., 2006). 

However, in this study, cutting of the Achilles tendon in both human cadavers and in the 

gorilla specimen only slightly increased the range of dorsiflexion possible in the ankle. 

Only after cutting the posterior tibiotalar component of the deltoid ligament was there 

unrestricted flexion of the tibia over the foot. Furthermore, damage to the human ankle 

suffered when dorsiflexed beyond 45˚ included tears of the deltoid ligament, fractures of 

the medial and lateral malleoli and damage to the posterior tibialis, flexor hallucis, and 

flexor digitorum longus muscles (Begeman and Pradad, 1990). However, there was no 

mention of tears of the Achilles tendon. Given the difference between the modern human 

and hominin posterior tibiotalar ligaments, there is the possibility that a strong 

dorsiflexion restricting posterior tibiotalar ligament evolved in concert with the strong 

Achilles tendon.  

 This study has only considered the effects that the area and angle of attachment of 

the posterior tibiotalar ligament has on ankle dorsiflexion; however, one also has to 

consider the possible adaptive functions of the posterior tibiotalar ligament besides 
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dorsiflexion restriction. This ligament serves a critical role in preventing excessive 

eversion (Stormont et al., 1985; Harper, 1987) and in limiting medial movement of the 

tibia over the talus (Michelson and Helgemo, 1995). Given that the axis of rotation of the 

ankle in eversion would be more or less centered on the talar body, the shape of the 

intercollicular groove would not change the origin of the posterior tibiotalar ligament 

relative to this axis and thus a deeper intercollicular groove would not increase efficiency 

of eversion resistance. However, a stronger posterior tibiotalar ligament would hold the 

medial aspect of the tibia in place as the lateral aspect of the tibia flexes over the talus. 

This would increase internal rotation of the tibia during dorsiflexion and external rotation 

during plantarflexion, and may explain why this rotation has been measured as up to 19˚ 

during walking in living humans (Donnatelli, 1990), but only 0˚ from the skeletal 

elements alone (Chapter 4). The role that increased tibial rotation would have in the 

kinematics of normal bipedal walking should be examined more closely in light of these 

data.  

 Although the biomechanical properties did not differ between the human and non-

human primate posterior tibiotalar ligament, variation observed in the function of this 

ligament and its ability to restrict dorsiflexion could also include mechanoreceptors in the 

ligament itself. There are four types of mechanoreceptors in mammalian ligaments, 

designated Type I-Type IV (Freeman and Wake, 1967). During proprioception, stretching 

of the ligaments activates these mechanoreceptors, which respond by generating nerve 

signals to the appropriate compensatory muscles. For example, nerve fibers from the 

deltoid ligament to the posterior tibialis nerve have been isolated in felines (Solomonow 

and Lewis, 2002). A histological study of the human ankle found that the anterior 
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talofibular, posterior talofibular, and posterior tibiotalar ligaments had significantly more 

Type II and Type III mechanoreceptors than what is found in the calcaneofibular and 

superficial deltoid fibers (Michelson and Hutchins, 1995). These data are consistent with 

experimental evidence showing that the calcaneofibular and fibers of the superficial 

deltoid remain isometric through the range of motion in the human ankle (Leardini et al., 

1999; Stagni et al., 2004). Type II receptors respond at the beginning of joint motion 

whereas Type III receptors are activated during the extremes of joint motion (Wyke, 

1972; Zimny, 1988). Their presence in high concentrations in the human posterior 

tibiotalar ligmament is consistent with the hypothesis that this ligament helps restrict 

dorsiflexion and will recruit muscle action during extremes of dorsiflexion. It is 

hypothesized that there would be fewer Type II and Type III mechanoreceptors in the ape 

posterior tibiotalar ligament. However, the possibility exists that variation in the number 

of mechanoreceptors in the ligament of now extinct catarrhines and hominins may have 

made the ligament more or less responsive to changes in length. For example, increased 

Type II receptors in the posterior tibiotalar ligament in the hominin ankle would have 

triggered a muscular response to an increase in dorsiflexion. This could have 

compensated for a smaller intercollicular groove than what humans possess today, and 

would be undetectable in the fossil record. Comparative studies of the frequency and 

distribution of mechanoreceptors in the primate ankle are needed to begin to address this 

possibility.    
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Conclusion 

In humans, the posterior tibiotalar portion of the deltoid ligament is a primary 

restrictor of extreme dorsiflexion in the ankle. The biomechanical properties of the 

posterior tibiotalar ligament are statistically identical in humans and in Papio anubis. 

Therefore, it is reasonable to assume that differences in cross-sectional area and in the 

geometry of this ligament relative to the joint axis will reflect differences in its function. 

Preliminary data on primate cadavers suggest that the ligament has a relatively large 

cross-sectional area in humans and terrestrial primates, but is relatively smaller in the 

vertically climbing apes Pan and Gorilla. In addition, the ligament attaches closer to the 

axis of rotation of the ankle in vertically climbing apes and atelines, limiting its role to an 

ankle stabilizer. By shifting this ligament away from the axis of rotation, it changes it role 

from a stabilizer to a restrictor of extreme dorsiflexion. The early hominoid Proconsul 

had a well developed posterior tibiotalar ligament and probably could not dorsiflex at the 

ankle like modern apes, limiting their ability to vertically climb. A shift in the function of 

the posterior tibiotalar ligament towards a dorsiflexion inhibitor is already apparent in 

early hominin distal tibia as well and provides evidence that ape-like vertical climbing 

was not a likely locomotion practiced by our hominin ancestors.      
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CHAPTER 6 
 

Ankle stability and the evolution of the anterior talofibular ligament. 
 

Abstract 

Ankle stability is important for terrestrial and arboreal locomotion in primates. 

Joint stability, however, can be achieved anatomically in three different ways. A joint can 

be strengthened with muscle, reinforced with strong ligamentous tissue, and via the bony 

morphology of the joint itself. In humans, ankle stability is maintained in part by the 

anterior talofibular ligament. However, this ligament, which is one of the most often 

sprained structures in the human body, is rare or completely absent in non-human 

primates. Because this ligament attaches to a bony tubercle on the distal-lateral aspect of 

the talar body, its evolutionary history can be tracked. A comparative analysis of the 

biomechanical properties of baboon ankle ligaments, the shape of the talar trochlea in Old 

World primates, and a study of 15 hominin tali from 3.2 million years ago to 1.5 million 

years ago suggest that all three strategies for stabilizing the ankle joint occurred in early 

hominin evolution, and that the anterior talofibular ligament may have evolved in the 

Homo lineage. Strong peroneal muscles may have resisted ankle inversion in the earliest 

bipeds, whereas the keeled bony morphology of the talar trochlea reinforced the ankle in 

later Plio-Pleistocene hominins. The first evidence of a well-developed anterior 

talofibular ligament can be found in the four largest tali in the hominin fossil record 

starting with the 2.2 mya talus from Omo Ethiopia (Omo 323-76-898), and later in 
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Kenyan specimens KNM-ER 1464, KNM-ER 813, and KNM-ER 5428. These results 

suggest that the flattening of the talar trochlea, an adaptive response to an increase in 

body size and perhaps long distance travel in the genus Homo, may have selected for the 

ligamentous, rather than bony means by which hominins stabilized the ankle.     

 

Introduction  

The talocrural joint, or the ankle, is formed between the distal tibia, distal fibula 

and the talus. As obligate bipeds, humans bear all of their weight on the talocrural joint 

during locomotion and thus have evolved a joint morphology well adapted to absorb and 

distribute forces through this region (Latimer et al., 1987). Instability of the talocrural 

joint can result in incongruence of the talus under the tibia (Skie et al., 1989; Harper, 

1990; Cass and Settles, 1994; Earll et al., 1996; Sugimoto et al., 1997) which causes an 

increase in localized stress (Calhoun et al., 1994; Driscoll et al., 1994; Kura et al., 1998; 

Michelson et al., 2001) and can lead to injury (Harrington, 1979). Stability of the ankle 

mortise is provided both by bony morphology and by ligamentous support. The distal 

tibia and fibula are attached to one another via the anterior and posterior tibiofibular 

ligaments. Three distinct ligaments, anterior talofibular, calcaneofibular, and posterior 

talofibular, support the lateral side of the upper ankle joint (Figure 6.1), whereas the 

medial side of the joint is anchored by the thick and strong deltoid ligament.  

Cass and Settles (1994) found that during foot inversion, ankle dislocation caused 

by tilting of the talus plantarly and medially away from the tibia is prevented by the 

anterior talofibular and calcaneofibular ligaments and that the articular surface of the 

talocrural joint contributes very little to preventing this motion. However, work by 
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Figure 6.1. Anatomy of the human ankle (lateral). 

 
Figure 6.1. Anatomy of the lateral side of the human ankle. The ankle is formed between 
the tibia, fibula, and talus bones. On the lateral side, the anterior talofibular (red), 
posterior talofibular (yellow), and calcaneofibular (blue) ligaments provide stability. The 
anterior talofibular ligament is one of the most often sprained ligaments in the human 
body.  
 

Tochigi et al. (2005, 2006) suggests that both ligaments and bony articular surfaces help 

stabilize the ankle. In an unloaded ankle, ligaments helped stabilize the ankle, but only at 

extremes of motion (Tochigi et al., 2005). When the ankle was loaded in an axial 

direction, both the articular surface and the ligaments shared the role of limiting inversion 

and internal and external rotation of the foot (Tochigi et al., 2006). Regardless of the 

relative contributions of ligaments and the articular surface to joint stability, many studies 

have concurred that the anterior talofibular ligament (ATaFL) is an important structure 

limiting inversion at the talocrural joint (Johnson and Markolf, 1983; Rasmussen, 1985; 

Stormont et al., 1985; Chen et al., 1988; Luo et al., 1997; Hintermann, 2002).  

However, during extreme inversion of the foot, it is not uncommon for the talus to 

tilt away from the talocrural mortise in humans (Cox et al., 1979; Siegler et al., 1988)  
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Figure 6.2. Talar tilting in human ankle and a sprain of the anterior talofibular ligament. 

 
Figure 6.2. Talar tilting. Extreme and sudden foot inversion causes the talus to tilt away 
from the tibia and fibula. This motion puts strain on the anterior talofibular ligament and 
can result in a sprain or tear of the ligament.   
 

(Figure 6.2). The degree to which this occurs is directly related to laxity of the anterior 

talofibular ligament (Inman, 1976; Cass and Settles, 1994; Lentell et al., 1995; Hertel, 

2002; Hubbard et al., 2007). Because the anterior talofibular ligament (ATaFL) is the 

weakest of the ankle complex (Attarain et al., 1985; Siegler et al., 1988), it is also the 

most often injured ligament in the ankle (Kumai et al., 2002; Taser et al., 2006) and 

perhaps in the entire body (Butler and Walsh, 2004). The Massachusetts General Hospital 

Orthopaedic division estimates that one million Americans suffer ankle injuries each 

year, of which 85% are lateral sprain injuries. Additionally, 38%-45% of all sports related 

injuries each year occur on the lateral side of the ankle, most of which are inversion 

sprains to the anterior talofibular ligament (Garrick, 1982; Liu and Jason, 1994). Anyone 
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who has “turned their ankle” and sprained the anterior talofibular ligament knows the 

pain associated with having their talus tilt away from their tibia. 

Interestingly though, this ligament has historically been reported as absent across 

non-human primates (Keith, 1893-1894; Parsons, 1899; Hill, 1953a; Hill, 1953b). Inman 

(1976) did not find the ATaFL in dissections of a macaque and chimpanzee, but did 

observe this ligament in one gibbon. Gomberg (1981) noted the presence of an ATaFL 

ligament in one captive male lowland gorilla, and one captive female mountain gorilla 

but not in chimpanzees (n=2) or an orangutan (n=1). Dissections of captive macaques 

(n=4), and a male captive lowland gorilla and a chimpanzee of unknown provenience by 

this author showed the ligament to be absent in all. Although there is variation in the 

number of bands composing it, the anterior talofibular ligament is always present in the 

human ankle (Milner and Soames, 1997).  

Foot inversion is an important motion in the primate lower limb (Conroy and 

Rose, 1983; Gebo, 1993). During vertical climbing bouts, and arboreal quadrupedalism, 

primates keep their bodies close to the substrate in part via inversion of the foot 

(Meldrum, 1991; Chapter 2). Because non-human primates engage in foot inversion and 

typically do not have an anterior talofibular ligament at all, several questions emerge:  

• Without an anterior talofibular ligament, do non-human primates have more talar 

tilting and is this a strategy by which they achieve additional foot inversion 

beyond what occurs at the subtalar joint?  

• How do non-human primates maintain ankle stability and prevent dislocation of 

the talus from the ankle mortise?  
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o Do non-human primates compensate for the absence of an anterior 

talofibular ligament with increased strength in the other lateral ankle 

ligaments?  

o Or have non-human primates instead evolved a talocrural joint shape that 

provides bony stability?  

• Finally, given its absence in most non-human primates, why do humans have an 

anterior talofibular ligament and under what circumstances did it evolve?  

 

The following hypotheses will be tested in this study:  

 

Talar tilting 

The absence of an anterior talofibular ligament permits talar tilting, or inversion at the 

talocrural joint, in non-human primates. 

 

Ankle ligaments 

There are no differences between the geometric and biomechanical properties of the 

ligaments of human and non-human primate ankles. 

  

Anterior talofibular ligament 

There are no differences in talar trochlear shape between species with an anterior 

talofibular ligament and those without. 
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Materials and Methods 

X-rays of talar tilting in non-human primates 

Lower limbs were obtained from ten sub-adult olive baboons (Papio anubis) 

which had completed a research protocol approved by the University of 

Michigan's Institutional Animal Care and Use Committee. These animals were between 

two-three years old, and thus still had unfused epiphyses on the distal fibula and tibia. 

The animals weighed an average of seven kg (range 6.0 - 8.4 kg). Following euthanasia, 

the legs were amputated at the knee and were frozen for up to one month. A foot from a 

500 lb. adult male lowland gorilla (Gorilla gorilla gorilla) who died during a veterinary 

procedure at the Cincinnati Zoo was also x-rayed. After thawing for 24 hours, the baboon 

feet were positioned in frontal view and xrays were taken using a MinXray HF 100/30 at 

50 kVDC for 0.3mAs. The larger gorilla foot was radiographed using a MinXray HF 

100/30 at 64 kVDC for 0.8mAs. Radiographs were taken in frontal view with the foot 

slightly plantarflexed. Radiographs were then taken of the same feet with the midfoot 

being manually forced into inversion at the talocrural joint to encourage talar tilting.  

 

Biomechanics of ankle ligaments 

 Materials and methods for testing relative ligament strength, stiffness, and 

toughness are described in full in Chapter 5.   

 

Skeletal morphology  

The shape of the articular surface of the talus was assessed in 219 tali from wild-

shot adult primates, and 45 humans listed in Table 6.1. The human tali were from the 9th-  
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Table 6.1. Extant anthropoid tali measured in this study. 
Family Species Male Female Sex 

unknown 
Total 

Hominoid Homo sapiens 13 21 11 45 
 Pan 

troglodytes 
19 22 10 51 

 Pan paniscus 2 1 1 4 
 Gorilla 

gorilla gorilla 
23 19 3 45 

 Gorilla 
gorilla 
beringei 

10 3 0 13 

 Pongo 
pygmaeus 

12 18 7 37 

 Hylobates lar 17 17 2 36 
 Symphalangus 

syndactylus 
4 3 1 8 

Cercopithecoid Papio spp. 13 3 8 24 
 Mandrillus 

sphinx 
2 2 3 7 

 Theropithecus 
gelada 

2 1 0 3 

 

12th century PaleoIndian Libben population housed at Kent State University (Lovejoy et 

al., 1977). The non-human primates were studied at the Cleveland Museum of Natural 

History, Field Museum, American Museum of Natural History, National Museum of 

Natural History, Museum of Comparative Zoology (Harvard), and Peabody Museum 

(Yale). The tali were photographed in distal view with a Nikon D100 digital camera. 

Many studies have oriented the talus in standard position with the base of the proximal 

tubercles on the same plane as the base of the talar head, and with the fibular facet 

parallel to this basal plane (Lisowski et al., 1974; Kidd and Oxnard, 2005). However, it 

has long been known that this is not precisely the anatomical orientation of the talus in 

the live foot (Appleton, 1913; Barnett, 1955). Therefore, the depth of the talar groove was 

measured without any assumptions regarding the positioning of the talus in the live 
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primate foot. Instead, a line was drawn across the most superior aspect of the talar 

trochlea and the height of a line drawn perpendicular to this reference line to the depth of 

the talar groove was measured. This height was standardized by the mediolateral width of 

the talar trochlea.  Significant differences among primate species for this measure were 

assessed using a one-way ANOVA and the post hoc Tukey honestly significantly 

different (HSD) test.  

The depth of the talar groove was measured as indicated above on 15 fossil 

hominin tali listed in Table 6.2. Measurements were performed on original fossil 

specimens at the Kenya National Museum in Nairobi, the Tanzania National Museum 

and House of Culture in Dar es Salaam, the Transvaal Museum in Pretoria, South Africa, 

and the Department of Anatomy at Witwatersrand University in Johannesburg, South 

Africa. High quality casts of the A. afarensis talus Lucy (A.L. 288-1) and the Omo talus 

323-76-898 from Ethiopia, were measured at the University of Michigan Department of 

Anthropology. 

The tali were also assessed using a known relationship between the axis of 

rotation of the ankle and the orientation of the tibia relative to the foot in African apes 

and humans (Latimer et al., 1987). Chimpanzees, gorillas, and humans share a common 

angle between the axis of rotation of the talocrural joint and the long axis of the tibia 

(Figure 6.3). Because the axis of rotation of the talocrural joint runs approximately 

through the tips of the malleoli, this axis can be estimated using the most plantar articular 

facets of isolated tali. The angle formed between the axis of rotation and a line drawn 

across the superior surface of the talar trochlea was measured in all of the extant and  
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Table 6.2. Fossil hominin tali and tibiae measured in this study.  
Accession 
number 

Element Geological 
age 

Taxon Talocrural 
axis angle 
(˚) 

Depth of 
trochlear 
groove 
(% of 
talar 
width) 

*Estimated 
Body 
Mass (kg) 

KNM-KP 
29285 

Tibia 4.120 Australopithecus 
anamensis 

8.1 7.6 42.9 

A.L. 333-
6 

Tibia 3.21 A. afarensis 6.2 2.2 31.1 

A.L. 333-
7 

Tibia 3.21 A. afarensis 5.0 2.5 43.3 (est.) 

A.L. 288-
1  

Talus 3.181 A. afarensis 5.2 5.1 28.7 

A.L. 288-
1  

Tibia 3.181 A. afarensis 6.5 4.4 24.9 

StW 181 Tibia 2.6-2.82 A. africanus? Damaged 4.7 32.7 (est.) 
StW 347 Talus 2.6-2.82 A. africanus? 8 Damaged 5.3 27.3 (est.) 
StW 358 Tibia 2.6-2.82 A. africanus? 8, 20 9.7 6.0 24.4 
StW 363 Talus 2.6-2.82 A. africanus? 23 6.6 5.7 31.9 
StW 389 Tibia 2.6-2.82 A. africanus? 8, 20 9.3 4.7 34.2 
StW 88 Talus 2.6-2.82 H. habilis? 6,7, 20 

A. africanus?  
5.4 4.1 32.2 

StW 514b Tibia 2.6-2.82 A. africanus? 8, 18 5.8 6.7 28.5 (est.) 
StW 486 Talus 2.6-2.82 A. africanus? 8  8.7 9.1 38.5 
StW 102 Talus 2.4-2.82 H. habilis? 7, 20 

A. africanus? 8 
6.9 7.9 33.2 

Omo 323-
76-898 

Talus 2.23 Homo? 9,10  9.5 5.3 46.3 

TM 1517 Talus 1.9-2.04 P. robustus? 20  6.1 7.2 31.6 
SKX 
42695 

Talus 1.5-2.05 P. robustus? 5 
Homo? 5 

Damaged 5.9 46.0 

KNM-ER 
1481 

Tibia 1.93 H. habilis? 20, 21 

H. erectus 22 
5.5 5.7 42.9 

KNM-ER 
1500 

Tibia 1.93 P. boisei? 15, 20 2.4 7.5 (est.) 36.7 

KNM-ER 
2596 

Tibia 1.93 Hominin 25  
Cercopithecoid? 

22.0 5.1 24.9 

KNM-ER 
1476 

Talus 1.883 P. boisei? 10, 11  8.7 7.8 36.4 

OH 8 Talus 1.85 H.  habilis? 12, 13, 

20 

P. boisei? 10, 14, 15  

7.0 10.3 33.5 

OH 35 Tibia 1.85 H. habilis? 13, 20 

P. boisei?  
4.0 6.8 28.7 
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KNM-ER 
813 

Talus 1.853 Homo 10, 14 8.2 9.1 52.2 

KNM-ER 
1464 

Talus 1.73 P. boisei? 15, 20   
Homo?   

8.5 9.6 54.6 

StW 567 Tibia 1.4-1.72 Homo 2, 24 6.2 5.5 37.6 
KNM-ER 
5428 

Talus 1.63 H. erectus 19, 26  7.6 5.5 94.5 

KNM-ER 
803 

Talus 1.533 Homo 16, 19, 20 Damaged Damaged 67.4 
(based on 
femur) 

KNM-
WT 
15000 

Tibia 1.517 H. erectus 17 5.0 2.8 58.3 

Kabwe 
E691 

Tibia >490k27 

780k-1.3 
mya28 

H. erectus29 
H. 
heidelbergensis30

H. rhodesiensis28

7.0 4.1 70.5 
(based on 
proximal 
tibia) 

*Based on average of three human-regression equations from McHenry (1992).   
0Leakey et al., 1998; 1Walter et al., 1994; 2Kuman and Clarke, 2000; Deloison, 2003; 
Pickering et al., 2004; 3Feibel et al., 1989; 4McKee, 1995; 5Susman et al., 2001; 6Clarke, 
1985; 7Christie, 1990; 8McHenry and Berger, 1998; 9Deloison, 1997; 10Gebo and 
Schwartz, 2006; 11Leakey, 1973; 12Leakey et al., 1964; 13Susman and Stern, 1982; 
14Wood, 1974; 15Grausz et al., 1988; 16Day and Leakey, 1974; 17Walker and Leakey, 
1993; 18Berger and Tobias, 1996; 19Antón, 2003; 20McHenry, 1994; 21Trinkaus, 1984; 
22Kennedy, 1983; 23Fisk and Macho, 1992; 24Curnoe and Tobias, 2006; 25Leakey and 
Walker, 1985; 26Walker, 1994; 27Millard, 2008; 28McBrearty and Brooks, 2000; 29Asfaw 
et al., 2002; 30Rightmire, 1998 
 

fossil tali mentioned above. A high angle (~25˚) would indicate that the tibia sat 

obliquely on the talus like in African apes, whereas a lower angle (~10˚) would indicate 

that the long axis of the tibia was perpendicular to the talar trochlea like that found in 

modern humans (Latimer et al., 1987). A perpendicularly aligned talocrural joint would 

further indicate that the ankle and knee were both under the center of gravity, and thus 

the individual would have possessed a valgus knee (Latimer et al., 1987). Significant 

differences among primate species for this measure were assessed using a one-way 

ANOVA and the post hoc Tukey honestly significantly different (HSD) test. Twenty 

randomly selected specimens were measured a second time a month after the original  



 232

Figure 6.3. Geometry of the chimpanzee and human talocrural joint. 

 
Figure 6.3. The long axis of the tibia is obliquely oriented relative to the plane of the 
talocrural joint in African apes (left), but perpendicularly oriented in humans (right). 
Because the angle formed between the long axis of the tibia and the ankle axis of rotation 
(B) is conserved between African apes (left) and humans (right), the angle formed 
between the plane of the talocrural joint and the axis of rotation (A) can be taken on 
isolated tali and can be used to calculate the angle formed between the long axis of the 
tibia and the talar surface (C). Angle B is greater in African apes than in humans. 
Reproduced with permission from Latimer et al. (1987).  
 

measurement to assess repeatability. The average difference between the two measures 

was 1˚ ± 0.5˚ with a maximum difference between two measures of 1.93˚.  

 It has been found that the shape of the superior surface of the talus and the shape 

of the articular facet of the distal tibia are near reciprocals of one another (Aiello et al., 

1998; Wood et al., 1998) and thus the inverse shape of the distal tibia could be used to 

estimate the shape of the undiscovered talus from that fossil hominin. To test the 
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congruence of associated tibia and tali using the methods in this study, the shape of these 

articular facets of these bones were taken with a carpenter’s contour guide on 

chimpanzees (n=31), gorilla (n=28), and modern human (n=29). A photograph was taken 

of the contour impression of the articular facets, and the depth of the trochlear groove and 

height of the tibial keel were assessed as function of the length of the articular facet in the 

program Image J. Although there was more incongruence between associated tibia and 

tali than expected, the shape of the trochlear groove as determined by the tibia was within 

1.5% of the same measure obtained by using only an isolated talus. Interestingly, the 

curvature of the talar trochlea is overestimated by using the tibia in chimpanzees, but 

underestimated by using the tibia in gorillas and humans. This implies that the tibia is 

flatter than the talus in gorillas and humans, whereas the talus is flatter than the tibia in 

chimpanzees. With those caveats in mind, it is reasonable to use the tibia to estimate the 

shape of the corresponding talus in an interspecific study such as this one.  

Therefore, to increase the sample size of fossil hominins, the depth of the 

trochlear groove and the axis of the talocrural joint was measured on 13 distal tibia also 

listed in Table 6.2. These measurements were performed on original fossil tibia at the 

Kenya National Museum in Nairobi, and the Department of Anatomy at Witwatersrand 

University in Johannesburg, South Africa. First generation casts of two fossil tibia from 

Ethiopia (A.L. 333-6, A.L. 333-7) were studied at the Cleveland Museum of Natural 

History, and high quality research casts of A.L. 288-1, and the tibia from the Broken Hill 

site of Kabwe, Zambia were also measured at the University of Michigan Department of 

Anthropology. Distal tibia were scanned with a NextEngine portable 3-D laser scanner. 

The 3D models were imported into ScanStudio software and cropped such that only an 
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approximately 5 mm (anteroposterior) strip from the midregion of the trochlear surface 

remained in the coronal plane (Figure 6.4). This was necessary because the anterior and 

posterior rims of the distal tibia often have slightly different shapes than the actual 

surface that articulates with the talus. The model was oriented such that the trochlear 

surface was perpendicular to the long axis of the tibia and this image was captured using 

the program Jing. The image was then imported into Image J, and the depth of the 

trochlear groove measured as described for the tali above. The depth of the trochlear 

groove was also measured using this approach for all 14 of the fossil tali in this study and 

the results were no different from those obtained using high-resolution photographs 

(t=1.95, p=0.07; paired two sample for means t-test), and thus results from the two 

approaches are combined (Table 6.3).  To measure the axis of rotation, the 3D scans of 

the distal tibia were sliced directly in half in the coronal plane and the images captured by 

the program Jing and imported into Image J. The angle formed between the plane of the 

talocrural joint and the long axis of the tibia was measured. Because the angle formed 

between the axis of rotation and the plane of the talocrural joint is conserved in 

hominoids (Latimer et al., 1987; Figure 6.3), this angle was added to the measured angle 

and the sum subtracted from 180˚ to approximate the angle formed between the axis of 

rotation and the superior surface of the talus.  

The validity of this method was tested by measuring the angle in question directly 

on images of 30 human, chimpanzee, and gorilla tali, and then calculating the angle using 

the above methods on tibia from those same 30 individuals whose tibial axis angle was 

measured with a carpenter’s contour guide. There was a good correlation (r=0.72) 

between the measured and calculated angle. Differences between the measured and 
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Table 6.3. Comparison of talar keel depth using different measuring methods. 
Fossil hominin talus Depth using photograph Depth using 3D scanner 
A.L. 288-1 5.1% 6.0% 
StW 88 4.1% 4.7% 
StW 102 7.9% 8.2% 
StW 347 5.3% 4.9% 
StW 363 5.7% 6.2% 
StW 486 9.8% 9.2% 
Omo 323-76-898 5.3% 5.3% 
TM 1517 7.2% 7.5% 
SKX 42695 5.9% 5.9% 
KNM-ER 1476 7.8% 7.8% 
OH 8 10.3% 10.5% 
KNM-ER 813 9.1% 9.5% 
KNM-ER 1464 9.6% 10.1% 
KNM-ER 5428 5.6% 5.7% 
 
 

Figure 6.4. 3-D scan and digital cross-section of fossil Homo distal tibia KNM-ER 1481. 

 
Figure 6.4. 3-D scans of the 1.9 mya hominin distal tibia from Kenya KNM-ER 1481. 
Scans were obtained using a NextEngine portable 3-D laser scanner on the original fossil 
at the Kenya National Museum. On the left is the complete fossil specimen in anterior 
view, and on the right is an enlarged view of the talar articular surface in coronal view. 
These cropped data were used to measure the depth of the trochlear 
 

calculated angle were typically in the direction of the direct talar measurement being a 

slight underestimate (~2˚) of the angle as calculated from the angle formed between the 

long axis of the tibia and its articular surface. Measurements, taken directly from the A.L. 
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288-1 talus, and calculated indirectly from a measurement of the associated A.L. 288-1 

tibia, are only 1.3˚ different, further suggesting the validity of this approach for fossils.   

The presence or absence of an anterior talofibular ligament was assessed on all of 

the tali studied. This was done by visual inspection and palpation for a small tubercle on 

the distal-lateral body of the talus, midway between the superior and inferior articular 

surfaces. The presence of this ligament at its point of insertion on the talus was chosen 

over its origin on the distal fibula for several reasons. This author was unable to detect 

obvious differences between the anterior distal aspect of the lateral malleolus of the 

fibula in humans and in chimpanzees related to the presence or absence of the anterior 

talofibular ligament, and there was considerable variation in the shape of the distal fibula 

within the a human population despite the fact that all humans have this ligament (Milner 

and Soames, 1998). Second, the origin of the anterior talofibular ligament overlaps 

anatomically with the fibers of the calcaneofibular ligament, which also originates on the 

anterior aspect of the distal fibula, though in a slightly more distal region (Burks and 

Morgan, 1994; Hintermann, 2002; Taser et al., 2006). These two ligaments may even 

share fibers at their origin on the distal fibula (Golanó et al., 2006). Therefore, a strong 

calcaneofibular ligament may result in a broad tubercle on the distal fibula, easily 

mistaken for the presence of an anterior talofibular ligament. For these reasons, the 

morphology of the talus, rather than the fibula, was used to assess the presence or 

absence of this ligament.   
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Results 

X-rays of talar tilting in non-human primates 

 None of the ten baboon feet forced into inversion displayed any measurable talar 

tilting (Figure 6.5). The radiographs instead suggested that during forced inversion, tilting 

of the lateral aspect of the talus is blocked by the lateral malleolus of the fibula, and also 

hindered by the tibial keel and corresponding groove of the talar trochlea. The role of the 

fibula in blocking talar tilting, and grooving of the tibiotalar articular surface is also 

apparent on the gorilla radiograph (Figure 6.5). 

Figure 6.5a. Radiograph of talar tilting in baboon ankle. 
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Figure 6.5a. Radiograph of talar tilting in baboon ankle. 

 
Figure 6.5. Radiographs of a juvenile baboon ankle being inverted (a), and an adult male 
gorilla ankle being inverted (b). Note that despite exerting a substantial inversion force on 
the talocrural joint, the lateral corner of the talus does not “tilt” as is possible in human 
ankles (Figure 6.2), and is instead blocked by the fibula and the tibial keel in both the 
baboon (a), and the gorilla (b).  
 

Biomechanics of ankle ligaments 

None of the ten baboons had an ATaFL. The dimensions and material properties 

of the major ligaments of the baboon ankle are listed in Table 6.4. In baboons, the largest 

ankle ligament is the PTTL (10.67 mm2) followed by the PTaFL (6.14 mm2), and the 

CFL (1.25 mm2). The lateral ligaments were significantly weaker than the PTTL (t=5.81, 

p<0.001, df=22). The CFL failed at a load of 55.8 N ± 43.2 N (range 10 N-120 N) after a 

displacement of 3.6 mm ± 0.9mm (range 2.2 mm- 4.8 mm) while the PTaFL failed at a 

load of 58.7 N ± 19.1 N (range 30.9 N- 85 N) after a displacement of 3.2 mm ± 1.4 mm  
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Table 6.4. Geometric and material properties of baboon ankle ligaments. 
 Calcaneofibular Posterior talofibular Posterior tibiotalar 
Number of 
specimens 

6 8 10 

Length (mm) 17.0 ± 1.2 7.0 ± 1.1 6.4 ± 1.6 
Width (mm) 0.5 ± 0.1 1.4 ± 0.4 1.9 ± 0.5 
Height (mm) 2.6 ± 0.5 4.8 ± 0.9 7.1 ± 0.9 
Area (mm2) 1.25 ± 0.41 6.14 ± 2.47 10.67 ± 3.6 
Maximum force (N) 65.0 ± 41.3 58.7 ± 19.1 141.8 ± 41.0 
Maximum 
elongation (mm) 

3.3 ± 0.8 3.2 ± 1.4 3.4 ± 1.2 

Maximum stress 
(MPa) 

50.4 ± 22.9 9.8 ± 5.8 11.1 ± 4.1 

Maximum strain 
(mm/mm) 

0.20 ± .05  0.45 ± .16 0.53 ± .16 

Elastic modulus 
(MPa) 

248.9 ± 86.0 24.8 ± 9.9 28.3 ± 11.0 

 
(range 1.7 mm- 5.8 mm). The PTTL could withstand loads that were almost three times 

as great. The failure load on this ligament was 141.8 N ± 41.0 N (range 60 N- 210.7 N) 

while the displacement was 3.4 mm ± 1.2 mm (range 1.3 mm- 4.5 mm) before failure. 

The ability of this ligament to withstand the largest forces is consistent with this ligament 

having the largest cross-sectional area of the three ligaments.  

 Whereas the PTTL was the strongest of the ligaments, it was the CFL that was the 

stiffest (t=6.77, p<0.001, df=22). This ligament had an elastic modulus of 248.9 MPa ± 

86.0 MPa (range 104.3 MPa- 326.6 MPa). The elastic modulus of the PTaFL was 24.8 

MPa ± 9.9 MPa (range 11.4 MPa- 40.1 MPa) and the elastic modulus of the PTTL was 

28.3 MPa ± 11.0 MPa (range 13.2 MPa- 41.2 MPa). Thus, the CFL was approximately 

ten times stiffer than the other ligaments. The PTTL and PTaFL have a significantly 

higher strain value than the CFL (t=4.00, p<0.001, df=22). These ligaments are able to 

stretch approximately half their original length (PTaFL 0.45 ± 0.16; PTTL 0.53 ± 0.16) 

before failure.  
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 The toughness as measured by the energy that could be absorbed by the ligament 

before failure was highest for the PTTL (252.8 ± 121.0 Nmm). The PTTL is significantly 

tougher (t=4.06, p<0.001, df=22) than the CFL and PTaFL which have statistically 

equivalent toughness measures of 103.2 ± 85.7 Nmm and 93.7 ± 51.3 Nmm respectively.   

  

Skeletal morphology and fossil hominins 

 The depth of the groove between the highest points on the medial and lateral 

aspect of the talar trochlea differentiated the primate groups studied (Figure 6.6). Three 

apes (chimpanzees, lowland gorillas, and gibbons) were statistically indistinguishable 

from one another (Pan and Gorilla: p=0.42; Pan and Hylobates: p=0.99; Gorilla and 

Hylobates: p=0.89). In addition, orangutans and baboons had an identical depth to their 

talar trochleas (p=0.83). Mountain gorillas and modern humans had the flattest articular 

surfaces and were statistically similar to one another (p=0.05) with the following overall 

relationship: (Gorilla gorilla beringei = Homo sapiens) < (Hylobates = Pan = Gorilla 

gorilla gorilla) < (Papio = Pongo). 

The depth of the talar trochlea for fossil hominins is listed in Table 6.2. The 

flattest talocrural joints most like modern humans and mountain gorillas were the A. 

afarensis Hadar fossils AL 288-1, AL 333-6, AL 333-7, the South African talus StW 88, 

and the later H. erectus tibia from the Nariokotome Boy (KNM-WT 15000). What is 

preserved of the H. erectus talus KNM-ER 803 is also strikingly flat, though not enough 

of the superior surface of the talus is preserved to take a precise measurement. More 

keeled specimens though within the range of modern humans include the tali StW 347, 

Omo 323-76-898, KNM-ER 5428, and the tibia StW 181, StW 389, StW 567, KNM-ER 
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Figure 6.6. Relative depth of the anthropoid talar trochlea. 

 
Figure 6.6. Size-standardized depth of the trochlear keel in catarrhine primates. The depth 
of the trochlear groove was divided by the width of the trochlear surface of the talus and 
converted to a %. Boxplots show the median (black bar), interquartile ranges (blue/gray), 
and overall ranges of the data. Outliers defined as greater than 1.5 times the interquartile 
range are shown as circles. Humans and mountain gorillas have flat talar surfaces, while 
baboons and orangutans possess the deepest trochlear groove.  
 
 

1481, and KNM-ER 2596. A slightly more ape-like grooved talus with a keeled tibial 

articular surface was present in the tali StW 363, SKX 42695, and the tibiae StW 515, 

StW 358, OH 35. Baboon and orangutan-like deeply grooved tali and strongly keeled 

tibiae are present in the StW 102, StW 486, TM 1517, OH 8, KNM-ER 1476, KNM-ER 

1464, and KNM-ER 813 tali, and the tibia KNM-KP 29285 and KNM-ER 1500. 

 As Latimer et al. (1987) found, the angle formed between the axis of rotation of 

the talocrural joint and the superior surface of the talar body varied between primate 
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groups (Figure 6.7). Humans had a significantly smaller angle of 10.2˚ ± 2.3˚, and thus a 

talocrural joint more perpendicularly aligned with the long axis of the tibia than the other 

primate groups studied with the only exception being the hylobatids (p=0.05 using Tukey 

HSD test; though an insignificant p=0.003 using LSD test for planned comparisons). 

Pongo and Gorilla gorilla gorilla were statistically indistinguishable (p=0.99) as was 

Gorilla gorilla beringei and baboons (p=0.23), Pan (p=0.12), and hylobatids (p=0.10). 

Baboons and the hylobatids were also statistically similar (p=0.35). Pongo and Gorilla 

gorilla gorilla had the greatest angle between the tibial articular surface and the axis of 

rotation  (~19˚), and Homo sapiens and the hylobatids had the most acute angle. With the 

exception of a single fossil, all hominins measured in this study had human-like angles 

between the axis of rotation and the superior surface of the talus (Table 6.2), suggesting a 

perpendicularly oriented tibia and thus a valgus knee. The one fossil with evidence for an 

obliquely oriented tibial surface is the small distal tibia KNM-ER 2596. Although this 

fossil shares many features in common with other known hominin specimens, there is a 

possibility that KNM-ER 2596 is pathological, or from the cercopithecoid Rhinocolobus. 

A more detailed description of this fossil and its possible affinities appears in Chapter 4.  

The earliest purported hominin talus StW 573 was not studied by this author. However, 

approximate measurements could be taken from a photo of the specimen in distal view 

(Deloison, 2003). The fossil lacks the oblique orientation typical of ape-tali and instead 

has a human-like angle of about 8˚, and is deeply grooved with a depth of  about 9% of 

the talar width, making it quite similar to the earliest hominin tibia KNM-KP 29285 for 

these measures. It is unclear whether this specimen had an attachment for an ATaFL.  
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Figure 6.7. Geometry of the anthropoid ankle assessed from isolated tali. 
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Figure 6.7. The angle formed between the superior surface of the talus and the axis of 
rotation of the ankle differentiates humans from non-human primates (from Figure 6.3). 
The black bars represent median values with the blue/gray rectangles representing 
quartiles in this boxplot; the whiskers show the full range of the data. All twelve of the 
fossil hominin tali for which this measure was possible fell within the human range 
implying a perpendicularly oriented tibia, and a valgus knee.  
 

 A tubercle for the anterior talofibular ligament was not detected on any tali from 

Papio, Hylobates, Pan, or Pongo (Figure 6.8). However, there were some gorilla 

specimens that had rugosity in the area most likely to anchor an ATaFL. All gorilla 

specimens had a buttress running dorsoplantarly along the junction of the talar neck and 

body. Additionally, many gorilla and chimpanzee specimens had a distally extended 

articular surface that terminated in a lip of bone anterolaterally. This morphology was not 

regarded as an indication of the presence of an ATaFL. Only four Gorilla gorilla gorilla 
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tali (4/45 = 9%) had a clear tubercle midway between the tibial articular surface and the 

flaring of the fibular facet on the lateral aspect of the neck-body junction. This tubercle 

was also present on three Gorilla gorilla beringei tali (3/13 = 23.1%). Although all 

humans have an ATaFL (Milner and Soames, 1997), not all human tali had palpable 

tubercle for the ATaFL, although this feature was present in nearly all (42/45 = 93.3%).  

A discernable tubercle for the attachment of the anterior talofibular ligament was present 

on the hominin tali Omo 323-76-898, KNM-ER 813, KNM-ER 1464, and KNM-ER 

5428. On the Omo specimen, there are two weak, but detectable tubercles for the anterior 

talofibular ligament along the lateral neck-body junction, indicating that this individual 

had two bands of this ligament, like most humans today (Milner and Soames, 1997). The 

tubercle on KNM-ER 813 and KNM-ER 5428 is similar in size and location to the Omo 

specimen, whereas the KNM-ER 1464 tubercle is larger and more projecting. A 

roughened area on the lateral neck-body junction for ligament attachment was noted in 

the original description of the KNM-ER 1464 fossil (Day et al., 1976). It is difficult to 

determine if there was a tubercle for the ATaFL on the KNM-ER 1476 fossil. There 

appears to perhaps be a small tubercle, but there is also slight damage along the superior 

aspect of the lateral neck-body junction that may give the illusion of a tubercle. If this is a 

tubercle for the ATaFL, it is weakly developed. On fossil StW 363, there is a very small 

tubercle along the lateral edge of the neck-body junction. However, there is glue and 

matrix in this region, and though it is possible that this is real morphology, this author 

suggests that this “tubercle” is instead an artifact of preparation. For the fossil talus OH 8, 

there is some damage to the lateral neck-body junction, though no evidence could be 

detected for an attachment for the anterior talofibular ligament on the original specimen.  
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Figure 6.8. Comparative morphology of the anthropoid talus.  

 
Figure 6.8. Tali from (top: left to right) gibbon, chimpanzee, lowland gorilla, mountain 
gorilla and human. Across the bottom are fossil tali StW 88, OH 8, SKX 42695, KNM-
ER 1464, and KNM-ER 5428. The specimens are in lateral view and have been scaled to 
approximately the same size. The red arrows indicate the position of the tubercle for the 
anterior talofibular ligament. Note the absence in the gibbon, chimpanzee, lowland 
gorilla, StW 88, OH 8, and SKX 42695. The blue arrow on the lowland gorilla calls to 
attention a lip of bone extending distally not thought to represent an attachment point for 
the ATaFL.  
 

A study of the Wenner-Gren cast of the OH 8 talus would have led this author to suggest 

the presence of an ATaFL tubercle, not present on the original fossil. There is no 

evidence whatsoever for the presence of an ATaFL on the TM 1517, or SKX 42695 

South African fossils. On AL 288-1, StW 88, and StW 486, a buttress runs dorsoplantarly 

along the lateral neck-body junction, and a slight lip is present in the most distal aspect of 

the lateral trochlear articular surface, like the morphology of some gorilla and 

chimpanzee tali. However, no evidence for a distinct ATaFL tubercle can be found. Due 

to damage along the lateral neck-body junction, the presence or absence of an ATaFL 

tubercle could not be discerned for the StW 102, StW 347, or KNM-ER 803 fossils.   

Body mass estimates (Table 6.2) based on the regression equations in McHenry 

(1992) demonstrate that a definitive tubercle for the anterior talofibular ligament is 

present on the four tali from the largest hominin individuals (> 46 kg). Only the South 

African talus SKX 42695 recovered from Swartkrans Cave and belonging to either Homo 
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sp. or Paranthropus robustus is of that large size and does not have evidence for an 

ATaFL. Additionally, the three presumably Homo erectus ankle fossils younger than 1.6 

million years (KNM-ER 5428, KNM-WT 15000, KNM-ER 803) are demonstratively 

larger than previous specimens, and are more modern human-like in possessing a flat 

tibiotalar joint surface.  

 

Discussion 

In the introduction, several questions were posed related to the absence of the 

anterior talofibular ligament in most non-human primates. These were:  

• Without an anterior talofibular ligament, are non-human primates capable of more 

talar tilting and is this a strategy by which they achieve additional foot inversion 

beyond what occurs at the subtalar joint?  

• How do non-human primates maintain ankle stability and prevent dislocation of 

the talus from the ankle mortise?  

o Do non-human primates compensate for the absence of an anterior 

talofibular ligament with increased strength in the other lateral ankle 

ligaments?  

o Or have non-human primates instead evolved a talocrural joint shape that 

provides bony stability?  

• Finally, given its absence in most non-human primates, why do humans have an 

anterior talofibular ligament and under what circumstances did it evolve? 
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Results from X-rays of non-human primate feet forced into inversion suggest that 

the answer to the first question is no. Although non-human primates invert their feet 

during arboreal bouts (Meldrum, 1991; Gebo, 1993; pers. obs.), this movement probably 

occurs solely at the subtalar joint (Lewis, 1980), and not at the talocrural joint. X-rays of 

forced inversion on baboon and gorilla ankles suggest that the fibula and the median keel 

of the distal tibia and the corresponding talar groove both contribute to blocking talar 

tilting. Thus, the oblique orientation of the tibia on the talus and the keeled shape of the 

talocrural joint in non-human primates help provide stability to the ankle when the foot is 

loaded in an inverted position. 

The ankle of a non-human primate (baboon) was examined to test whether strong 

lateral ligaments compensate for the absence of an anterior talofibular ligament. As has 

been found in studies on humans, the largest and strongest ligament of those tested in the 

baboon ankle is the posterior tibiotalar portion of the deltoid ligament. This ligament has 

the largest cross-sectional area and consistently can withstand the greatest load before 

failure in baboons. In human studies, the PTTL also has the largest cross-sectional area of 

the ankle ligaments (Siegler et al., 1988; Boss and Hintermann, 2002), and can withstand 

the greatest loads (Attarian et al., 1985; Siegler et al., 1988). The maximum stress 

withstood by the PTTL was quite similar in the baboon (11.1 ± 4.1 MPa) and in a human 

study (16.0 ± 15.1 MPa) (Siegler et al., 1988). The strain calculated in the baboon 

demonstrated that it could stretch approximately half its original length before failure. 

This value is slightly higher than that reported in one human study (0.25 in Siegler et al. 

[1988]) and lower than another human study (2.1 in Attarian et al., [1985]). Given that 

the PTTL is a dorsiflexion inhibitor, these data are consistent with kinematic studies that 
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demonstrate that ankle flexion is limited in both humans (Begeman and Prasad, 1990; 

Parenteau et al., 1998) and the cercopithecoid monkeys (Hirasaki et al., 1993; pers. obs).   

The lateral ligament complex of the baboon ankle differed strikingly from that of 

the human ankle. First, the ATaFL, an important stabilizing ligament in the human ankle 

(Leardini et al., 2000), is completely absent from the baboon ankle. It was hypothesized 

that in the absence of an ATaFL, the baboon would compensate with a stronger PTaFL 

and CFL. This was not the case. The PTaFL in baboons is relatively weaker than the 

same ligament in humans. Siegler et al. (1988) found that the total force that the PTaFL 

could withstand was roughly the same value as the force at failure in the PTTL (418 ± 

191 N for PTaFL; 467 ± 289 N for PTTL). In baboons, however, the PTaFL failed at only 

one-third the total force that it took to rupture the PTTL. The stress at failure for the 

human PTaFL is 22.95 ± 24.28 MPa (Siegler et al., 1988) whereas the same value in 

baboons is only 9.8 ± 5.8 MPa. Baboon ligaments stretched approximately 45% of their 

total length before failure, between the 17% (Siegler et al., 1988) and 100% (Attarian et 

al., 1985) found for humans. 

The CFL of the baboon ankle, however, was remarkable similar to the human 

CFL in almost every respect. The maximum stress that the ligament could withstand 

before failure was 50.4 ± 22.9 MPa which is comparable to the human value of 46.2 ± 

36.6 MPa (Siegler et al., 1988). The ligament stretched 20% before failure in baboons 

and between 13% (Siegler et al., 1988) and 38% (Attarian et al., 1985) in humans. The 

elastic modulus of the baboon CFL was the largest of the three ligaments tested 

indicating that it is the stiffest ligament in the baboon ankle. The CFL has also been 

found to be the stiffest in the human ankle (Siegler et al., 1988). 
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It is difficult to determine whether the relative toughness of baboon ligaments is 

similar or different than values obtained from human studies. In baboons, the PTTL is 

significantly tougher than the CFL and PTaFL. In humans, Attarain et al. (1985) found 

the CFL to be twice as tough as the PTTL, followed by the PTaFL, and then the ATaFL. 

In contrast, Siegler et al. (1988) found the PTaFL to be the toughest followed closely by 

the CFL and PTTL, with the ATaFL approximately half as tough as the other ligaments. 

Because the Siegler et al. (1988) study tested more than twice as many ankle ligaments 

than the Attarain et al. (1985) study (80 versus 38), it may be argued that a more reliable 

comparison can be made with the Siegler et al. (1988) study. In that case, the baboon 

ankle differs from the human ankle in having a tougher PTTL and a less tough PTaFL.    

These data suggest that the lateral ligaments of the baboon ankle (calcaneofibular 

and posterior talofibular) are not relatively stronger, stiffer, or tougher than the same 

ligaments of the human ankle, and thus the baboon does not appear to stabilize its ankle 

with additional ligamentous reinforcements to compensate for the absence of the anterior 

talofibular ligament (Figure 6.9). 

Instead, these data suggest that bony morphology, in particular a keeled and 

obliquely oriented talar trochlea, helps stabilize the ankle in species that do not have an 

anterior talofibular ligament. The congruent keeled shape of the distal tibia and grooved 

superior surface of the talus limits rotation and translation of the talus under the tibia. 

Efforts to tilt the talus under the tibia would result in the keeled portion of the tibia 

blocking the medial aspect of the talar trochlea. Together with the previously mentioned 

mechanism of the fibula blocking the lateral aspect of the talar trochlea, a keeled and  
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Figure 6.9. Relative ligament strength on lateral side of baboon and human ankle. 
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Figure 6.9.  Pie graphs representing relative strength of the ankle ligaments in the baboon 
(n=10) and human (n=20; Siegler et al., 1988) ankles. The absence of the anterior 
talofibular ligament (orange) in the baboon ankle is not compensated with increased 
strength in the calcaneofibular or posterior talofibular ligaments (red and yellow 
respectively). Instead, the posterior tibiotalar ligament appears relatively stronger in the 
baboon due to the absence of the ATaFL.  
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obliquely angled talar trochlea is an important morphology in stabilizing the ankle of 

non-human primates (Figure 6.10). 

Both the obliquely oriented talar trochlea and a keeled trochlear surface are absent 

in the modern human talus (Latimer, et al., 1987; this study). The results of this study are 

in conflict with Langdon (1986) who found no difference in the depth of the talar trochlea 

between humans and the African apes. However, the results in this study are compatible 

with a morphometric study of the talus, which also found that modern humans have a 

flatter talar trochlea than African apes (Harcourt-Smith, 2002). Because there is limited 

bony morphology preventing this motion, the talar body can easily tilt away from the 

tibia during extreme inversion (Cox et al., 1979; Siegler et al., 1988). Humans have 

evolved an ATaFL, which resists unrestricted tilting of the talus under the tibia during 

foot inversion. Because the modern human talar trochlea is flat and oriented 

perpendicular to the long axis of the tibia, there is limited skeletal reinforcement to the 

lateral side of the ankle and thus the anterior talofibular ligament is particularly 

vulnerable during foot inversion, and thus is one of the most often injured soft-tissue 

structures in the human body (Kumai et al., 2002; Butler and Walsh, 2004; Taser et al., 

2006). The relationship between the angle of the talocrural joint and talar tilting is further 

supported by studies that have found that varus tilt of the talocrural joint is a strong 

predictor of chronic ankle instability (Sugimoto et al., 1997; Beynnon et al., 2001). Non-

human primates, in contrast, have a stabilizing valgus tilt to the talocrural joint (Figure 

6.10). 

The ankles of the gibbon and the mountain gorilla are consistent with the 

hypothesis that the anterior talofibular ligament evolved as a compensatory stabilizing 
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Figure 6.10. Three anatomical strategies for stabilizing the primate ankle. 

 
Figure 6.10. The ankle of can be stabilized in three different, though non-exclusive, ways. 
The ankle on the left is stabilized via a valgus tilt to the tibia. This morphology which 
causes the superiolateral edge of the talus to touch the lateral malleolus of the fibula 
during foot inversion is present in non-human primates and can be seen radiographically 
in Figure 6.5. The ankle in the middle has a strong trochlear keel, which limits extreme 
inversion by blocking movement of the superomedial aspect of the talar trochlear with 
the tibial keel. This morphology is also present in many non-human primates, early 
hominins and can be seen in Figure 6.5 radiographs as well. In the absence of these two 
morphologies, humans and some Pleistocene hominins evolved an anterior talofibular 
ligament (far right). The ligament may also be present in some gibbons and gorillas.  
 

mechanism in the absence of bony stabilization. The gibbon has a more vertically 

oriented talocrural joint, and the mountain gorilla has a flat tibiotalar joint most similar to 

the morphology found in modern humans (Figure 6.11). The flat talocrural morphology 

of the mountain gorilla is likely reflective of a more terrestrial lifestyle than what is found 

in the other African apes (Tuttle and Watts, 1985; Hunt, 2004). Many skeletal differences 

related to locomotion and substrate use have been found between mountain and lowland 

gorillas including a relatively shorter length of the humerus, a lower intermembral index, 

and a less divergent hallux (Schultz, 1927; Schultz, 1930; Schultz, 1934). More recently 

and with a larger sample, Taylor (1997) found that the scapula of lowland gorillas is  
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Figure 6.11. Bivariate plot of depth of talar trochlea and angle of talocrural axis. 
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Figure 6.11. Relationship between the keeled topography of the talus (x-axis) and the 
angle formed between the axis of rotation and the superior surface of the talus (y-axis) in 
extant anthropoids and extinct hominins. Extant primate data are shown as the mean 
values and the bars represent one standard deviation from the mean. Note that humans 
and two other species that may have an anterior talofibular ligament (gibbon and 
mountain gorilla) have the flattest tali with the most perpendicularly oriented tibia. With 
the exception of KNM-ER 2596, all of the hominin tibia and tali have a perpendicularly 
oriented tibia over the talus; however, they vary significantly in the degree of trochlear 
keeling. 
 

better adapted for loading in an arboreal environment than the scapula of mountain 

gorillas. This study suggests that in addition to the scapula, the talus may reflect 

locomotor differences between the different subspecies of Gorilla, with a flatter, more 

perpendicularly oriented tibial shaft over the foot distinguishing the mountain gorilla 

from the more arboreal lowland gorilla. Although it is unclear why gibbons have evolved 

a perpendicularly oriented talocrural morphology, the presence of this joint shape may 

explain why the anterior talofibular ligament has been found in a gibbon (Inman, 1976) 

and in addition, a flat talar trochlea helps explain why this ligament has been found in a 
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mountain gorilla (Gomberg, 1981). Why the ligament has also been found in a lowland 

gorilla (Gomberg, 1981) is unclear, though this ligament was not present in a lowland 

gorilla dissected by this author. More information about the presence or absence of the 

anterior talofibular ligament from ape dissections is sorely needed.   

Because the anterior talofibular ligament anchors on small tubercles on the 

junction of the neck and body of the lateral side of the talus (Sarrafian, 1993; Golanó et 

al., 2006), the presence of this ligament can be traced through the hominin fossil record. 

However, it is emphasized that a bony tubercle for the anterior talofibular ligament is not 

present in any gibbon talus studied (n=44), though this ligament is known from at least 

one dissected individual (Inman, 1976). In many mountain and lowland gorilla tali, there 

is an apparent tubercle on the most superior aspect of the body-neck junction, and often a 

strong buttress along the body-neck junction running dorsoplantarly. It is suggested here 

that those morphologies have nothing to do with the presence of an anterior talofibular 

ligament. However, in a small number of gorilla tali, a diminutive tubercle midway 

between the superior and inferior aspect of the lateral body-neck junction was detected. 

Thus, as Gomberg (1981) found, the anterior talofibular ligament may be present in some 

lowland gorillas, and perhaps a greater percentage of mountain gorillas.  

A definitive tubercle for the anterior talofibular ligament is not present in six 

hominin fossil tali (AL 288-1, StW 88, StW 363, SKX 42695, TM 1517, OH 8), may be 

weakly present in two specimens (StW 486, KNM-ER 1476), and is present in four tali 

(Omo 323-76-898, KNM-ER 1464, KNM-ER 813, and KNM-ER 5428). The Omo talus 

is 2.2 million years old, KNM-ER 1464 and 813 are between 1.85-1.88 mya, and the 

KNM-ER 5428 talus is 1.6 mya (Feibel et al., 1989). The shape of the talar trochlea 
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fluctuates temporally as well with the earliest published hominin ankle from the keeled 

4.1 mya Australopithecus anamensis distal tibia, the oldest talus (A.L. 288-1 from A.  

afarensis) and other Hadar tibia having a flat surface, back to many Plio-Pleistocene tali 

and tibia being quite keeled, and finally to the more recent fossil tali and tibia again 

having a relatively flat talar surface. Some have suggested that the keeled morphology is 

ape-like and may reflect more arboreal behaviors in Plio-Pleistocene hominins (Lewis, 

1980; Kidd et al., 1996; Hartcourt-Smith, 2002; Deloison, 2003; Kidd and Oxnard, 2005). 

It is suggested here that this pattern of morphology can also be explained as different 

strategies for establishing ankle stability in fully bipedal hominins. 

Hominin tali can be grouped into those with a flat talar surface with no evidence 

for an ATaFL; a keeled surface with no evidence for an ATaFL; a keeled surface with an 

ATaFL; and a flat surface with an ATaFL. Because the angle that the axis of rotation 

forms with the superior surface of these tali is in the human range for all of these tali, the 

talocrural joint necessarily was perpendicular to the long axis of the tibia, and thus these 

species had a valgus knee, and were well adapted for bipedalism (Latimer et al., 1987). 

Because these hominins were committed bipeds, it was critical for these species to evolve 

mechanisms of ankle stability.  

The earliest hominin tali from the Australopithecus afarensis A.L. 288-1 (Lucy) 

and the three distal tibia from Hadar lack the oblique orientation and the keeled shape 

that stabilizes the ankle in non-human primates. The A. afarensis ankle is thus 

remarkably human-like in its morphology as others have noted (Latimer et al., 1987; 

Gebo and Schwartz, 2006). Unlike modern humans, however, this talus does not appear 

to have a detectable tubercle for the anterior talofibular ligament. There is the possibility 
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that the ligament was present, but did not leave a bony tubercle on the talus, as may be 

the case with gibbons. The possibility exists that a tubercle for the ATaFL might be 

detectable on the original fossil talus of A.L. 288-1, but not on the cast. Tubercles for the 

ATaFL were detectable, however, on both the original specimens and casts of KNM-ER 

813 and KNM-ER 1464. It is important to note too that in the original description of the 

Hadar A. afarensis distal fibula A.L. 333w-37 and A.L. 333-9b, Lovejoy et al. (1982) 

describe a tubercle for the anterior talofibular ligament. As mentioned previously, this 

author is unable to consistently and reliably differentiate a tubercle for the anterior 

talofibular ligament and one for the calcaneofibular ligament because of anatomical 

overlap between the fibers of these two ligaments (Burks and Morgan, 1994; Hintermann, 

2002; Golanó et al., 2006; Taser et al., 2006). If these distal fibulae are indeed preserving 

an insertion site for the anterior talofibular ligament, it may have been variably present in 

A. afarensis. The discovery of additional fossil tali and a full description of the A.L. 333-

147 talus (Ward et al., 1998) will help assess the nature of this ligament in the ankle of A. 

afarensis. Without the oblique orientation of the tibia, a keeled trochlea, or perhaps even 

an ATaFL, the question of how A. afarensis stabilized its ankle and prevented ankle 

dislocation during sudden inversion remains unanswered.  

One possible explanation is that ankle stability in A. afarensis may have been 

provided by strong peroneal muscles in this species (Figure 6.12). Based on the presence 

of a wide and deep peroneal groove on all five Hadar distal fibula, A.L. 288-1, A.L. 333-

9A, A.L. 333-9B, A.L. 333-85, A.L. 333w-37, and a larger peroneal tubercle on the 

calcanei A.L. 333-8 and A.L. 333-55, A. afarensis was equipped with large peroneal 

muscles (Johanson et al., 1982; Lovejoy et al., 1982; Latimer et al., 1982; Stern and 
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Susman, 1983; Latimer and Lovejoy, 1989). Some have suggested that the strong 

peroneals in A. afarensis fossils are evidence for continued arboreality in this species 

because these muscles are large in apes and active during climbing (Susman, 1983; 

Susman et al., 1984; Langdon, 1985; Hunt, 1994). Gebo (1992) has supported Stern and 

Susman’s (1983) alternative role of strong peroneals in australopiths as maintaining 

stability in a biped with more midfoot mobility than modern humans. Latimer and 

Lovejoy (1989) have added that the peroneals may have served a more dominant role in 

foot plantarflexion during bipedality prior to the evolution of an enlarged Achilles tendon 

and a more derived gastrocnemius muscle. It is suggested here that strong peroneals may 

also have provided a mechanism for stabilizing the ankle joint in the absence of 

ligamentous or bony reinforcements. The hypothesis posed here and that of Latimer and 

Lovejoy (1989) and Gebo (1992; citing Stern and Susman [1983]) are not mutually 

exclusive. In modern humans, weak peroneals (Sugimoto et al., 1997), and a delayed 

peroneal reaction to foot inversion (Konradsen and Ravn, 1990; Khin-Myo-Hla et al., 

1999; Beynnon et al., 2001) are both strong predictors of chronic ankle instability. 

Studies on modern humans have found that the peroneal muscles react quickly enough to 

prevent inversion injuries especially if the foot is already inverted during the swing phase 

of bipedal locomotion (Konradsen and Højsgaard, 1993; Konradsen et al., 1997; 

Konradsen, 2002). In addition, the peroneal muscles have tendons that wrap around the 

distal fibula, and thus are close to the center of rotation. This arrangement results in the 

peroneals having a low mechanical advantage, but in return this muscle group can act 

quickly (Currey, 2002). In the absence of other means of stabilizing the ankle, A.  
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Figure 6.12. Models of ankle stability in fossil hominins. 

 
Figure 6.12. Possible mechanisms by which early hominins stabilized their ankles. The 
hominin on the far left is resisting inversion with strong everting peroneal muscles. This 
may have been the mechanism of ankle stability used by the A.L. 288-1, and StW 88 
individuals. The keeled trochlear surface, a morphology found in many Plio-Pleistocene 
hominin tali, would have provided ankle stability for the middle hominin. The hominin 
on the far right resists inversion with ligamentous support on the lateral side of the ankle, 
a feature found in the talus KNM-ER 5428. Specimens Omo 323-76-898, KNM-ER 813, 
and KNM-ER 1464 have both a keeled trochlear surface and evidence for an anterior 
talofibular ligament.  
 

afarensis may have relied on large peroneals to prevent severe ankle injury during sudden 

foot inversion.  

Strong peroneal musculature is evident not only in the A. afarensis calcanei A.L. 

333-8, A.L. 333-55 from Hadar (Latimer et al., 1982; Latimer and Lovejoy, 1989), but 

also in the enlarged peroneal process of an A. africanus calcaneus StW 352 from the 2.6-

2.8 mya Member 4 deposits in the Sterkfontein cave of South Africa (Deloison et al., 

2003; pers. obs.). The flattest fossil hominin tali measured in this study also come from 

the Hadar deposits (A.L. 288-1), and the Member 4 deposits of the Sterkfontein cave in 

South Africa (StW 88). The 2.36 mya hominin calcaneus from the Shunguru Formation 
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in Ethiopia, Omo 33-74-896 also has a large peroneal tubercle (Deloison, 1986; Gebo and 

Schwartz, 2006), and although it is damaged on its lateral side, the OH 8 calcaneus is 

preserved enough to detect the superior aspect of a peroneal tubercle, though it is difficult 

to tell how large it would have been (pers. obs.). Additional, preferably more recent, 

fossil calcanei will be needed to test the role of the peroneals in ankle stability by 

assessing whether the eventual reduction in the peroneal musculature corresponded to the 

evolution of a stabilizing keeled talar trochlea, or to the evolution of the anterior 

talofibular ligament. Two more recent distal fibula, KNM-ER 1500 and KNM-ER 1481 

from 1.9 mya deposits in the Koobi Fora (Feibel et al., 1989) are notably different from 

the Hadar fibula in having a much reduced groove for the peroneal tendons (pers. obs.). 

Day et al. (1975) describe the KNM-ER 1481 fibula as having only a “faint groove” for 

the peroneal tendons, and Day et al. (1976) remark on the smoothness of the peroneal 

groove region on the KNM-ER 1500 distal fibula. These two hominins fortunately 

preserve the distal tibia as well. KNM-ER 1500 has a keeled talocrural joint surface, 

perhaps as adaptations to stabilize the ankle in the absence of strong peroneals and in the 

absence of an anterior talofibular ligament (Table 6.2); whereas KNM-ER 1481 has a 

flatter joint surface and it is predicted that in the absence of strong peroneals, this 

individual would have had an anterior talofibular ligament like the similarly shaped talus 

KNM-ER 5428 (Table 6.2). Additional hominin fibula, StW 356 from the 2.6-2.8 mya 

Member 4 deposits in the Sterkfontain Cave, and OH 35 from 1.85 mya sediments in 

Olduvai Gorge do not preserve enough of their distal ends to make a judgement about the 

size of the peroneal muscles.  
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Other hominin tali, primarily from Sterkfontein cave in South Africa, Olduvai 

Gorge in Tanzania, and from the Koobi Fora in Kenya, have a strong central keel and 

high lateral margins. This has been interpreted by some to be an ape-like morphology in 

which the tibia swings laterally over the talus (Kidd et al., 1996; Hartcourt-Smith, 2002) 

and is suggestive of their continued use of arboreal habitats (Deloison, 2003). However, 

when the specimens are oriented relative to the conserved angle between the talocrural 

joint surface and the axis of rotation present in all African apes and humans (Latimer et 

al., 1987), these tali do not have high lateral margins, but are striking for their deeply 

grooved talar surfaces. Most of these tali are absent of any indication for an anterior 

talofibular ligament. The keeled morphology may have little to do with ape-like arboreal 

behavior and instead may be a novel manner by which Plio-Pleistocene hominins 

stabilized their ankles during bipedal locomotion in the absence of an anterior talofibular 

ligament (Figure 6.12).  

Importantly, the four largest tali in the hominin fossil record are the four tali with 

clear evidence of an anterior talofibular ligament. Using the regression equation from 

McHenry (1992), the Omo specimen belonged to a 46 kg individual, KNM-ER 813 and 

1464 from 52 and 55 kg hominins respectively, and KNM-ER 5428 from a 95 kg 

individual. An increase in body size, and perhaps the adoption of long distance travel and 

endurance running in the genus Homo (Bramble and Lieberman, 2004), may have 

resulted in flat tali whether through natural selection or functional adaptation of bone and 

bone precursors as a result of increased forces. The anterior talofibular ligament is 

partially responsible for maintaining ankle stability in these ankles for which bony 

stability has been lost (Figure 6.12). 



 261

The chondral modeling theory of bone development (Frost, 1979; Frost; 1999; 

Hamrick, 1999a) predicts that joints will become flatter with an increase in force across 

that joint whether from an increase in body mass, or a change in the loading environment. 

This remodeling assures that the direction of force remains perpendicular to the joint 

surface, maximizing the compressive component of the force (where bone is strongest), 

and minimizing shear forces. This model for the adaptation of bone to environmental 

stimuli hypothesizes that chondrocytes in immature articular cartilage are activated by 

hydrostatic pressure differences that occur during joint loading. There is experimental 

evidence for this mechanically-induced activity of chondrocytes (Takahashi et al., 1997; 

Wong et al., 1997; reviewed in Grodzinsky et al., 2000). Evidence in favor of this model 

include anteroposterior flattening of the hominoid talus with increased body size (Latimer 

et al., 1987), a decrease in knee joint curvature with age and size in the marsupial 

Didelphis (Hamrick, 1999b), and an increase in joint surface curvature in the knees of 

paralyzed humans (Frost, 1999). Although this model was not supported by recent work 

on the proximal tibia in hominoids and hominins (Organ and Ward, 2006), the flattened 

distal femur in humans and hominins may ensure that the high forces incurred during 

bipedality are oriented perpendicular to the axis of the knee (Heiple and Lovejoy, 1971; 

Organ and Ward, 2006). 

An increase in body size notable for Homo erectus (McHenry, 1992; Walker and 

Leakey, 1993; Antón, 2003) would have significantly increased the forces on the 

talocrural joint, and according to the chondral modeling theory would have resulted in a 

mediolaterally flatter talocrural joint. However, in addition to an increase in body size, 

there is evidence that the evolution of H. erectus signaled a dramatic change in behavior 
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in Plio-Pleistocene hominins (Wolpoff, 1999; Antón, 2003). Bramble and Lieberman 

(2004) have presented evidence for the evolution of endurance running in early Homo 

and into H. erectus. Studies on modern humans suggest that compared to walking, 

running results in substantially higher compressive forces on the ankle (Cavanaugh and 

LaFortune, 1980) approximately five times a runner’s body weight (Burdett, 1982; 

Subotnick, 1985). Thus, the adoption of endurance running in H. erectus would have 

resulted in a substantially greater force regularly incurred on the talocrural joint. An 

increase in travel distance or speed in H. erectus is supported by evidence for an increase 

in limb length (Wang et al., 2004; Pontzer, 2005; Steudel-Numbers, 2006; Steudel-

Numbers, 2007). Furthermore, fossil evidence from the 1.77 mya site of Dmanisi in 

Georgia (Lordkipanidze et al., 2007), and the 1.5-1.8 mya Indonesian sites of Perning and 

Sangiran (Antón, 2003) demonstrate that soon after it evolved, H. erectus dramatically 

expanded its geographical range. An increase in body mass and changes in foraging 

strategies are strong predictors of an increase in home range across primates and H. 

erectus appears to be no different (Antón et al., 2002). Although it was suggested that the 

Dmanisi hominins were quite small, estimates of body mass based on postcranial remains 

suggest that these hominins were 40-50 kg, with the tibia D3901 from a 48.6 kg 

individual (Lordkipanidze et al., 2007). Thus, the Dmanisi hominins are in the size range 

for some of the larger Plio-Pleistocene hominin tali and tibia from this study (KNM-ER 

1481, KNM-ER 813 for example). Thus, in addition to an enlarged body size, an increase 

in the locomotor activity of early Homo and H. erectus would have imposed a still greater 

stress on the talocrural joint, and selected for a mediolaterally flat tibiotalar joint surface. 

This scenario is supported by fossil evidence measured in this study.   
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The 1.6 mya KNM-ER 5428 talus, in particular, cannot be easily differentiated 

from modern human tali in its trochlear shape. A slightly more recent talus, KNM-ER 

803 from 1.53 mya deposits in Kenya, is fragmentary, but preserves enough of the lateral 

aspect of the trochlear surface to tell that it would have an even  flatter superior surface 

than KNM-ER 5428 (Figure 6.13). Additionally, the distal tibia of the Homo erectus 

individual KNM-WT 15000 is also strikingly flat mediolaterally, suggesting that the 

corresponding talar surface would be flat much like the KNM-ER 5428 and KNM-ER 

803 hominins. This morphology is also present in the Kabwe tibia from the Middle 

Pleistocene and continues into modern humans. This is in contrast to earlier fossil distal 

tibia, like KNM-ER 1481 and OH 35, which have more keeled midlines. With the 

evolution of a flat talar surface, H. erectus would be susceptible to ankle dislocation 

during sudden foot inversion. The ankle of H. erectus and modern humans may be an 

example of an evolutionary trade-off in which selection for a flat talar joint surface more 

efficient at distributing forces through the joint occurs at the expense of joint stability, 

rendering the ankle joint more susceptible to dislocation. However, the KNM-ER 5428 

talus has an obvious tubercle for the anterior talofibular ligament and thus H. erectus had 

evolved the ligamentous support present in modern humans. It cannot be understated how 

this shift in talocrural morphology, though rendering the ankle susceptible to ligament 

injury, may have better adapted humans for long distance bipedal travel or running. 

Osteroarthritis, though common in the human hip and knee, is relatively rare in the ankle 

(Stauffer et al., 1977; Greenwald, 1983). Stauffer et al. (1977) tested whether this 

reduction in degenerative joint disease was related to a decrease in forces incurred by the 

ankle during walking, and instead found that the forces are higher at the ankle than at the  
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Figure 6.13. Flattening of the talus in hominin evolution. 

 
Figure 6.13. 3-D scans from the 1.85 mya talus OH 8 (left), the 1.7 mya talus KNM-ER 
1464, the 1.6 mya talus KNM-ER 5428, and the 1.53 mya partial talus KNM-ER 803 in 
distal view. The specimens have been scaled to approximately the same size, though their 
actual sizes differ (see Table 6.2). Moving from left to right, the superior aspect of the 
talar trochlear becomes progressively flatter with time. KNM-ER 1464 and KNM-ER 
5248 preserve a tubercle for the anterior talofibular ligament and it is hypothesized that 
KNM-ER 803 would have possessed this ligament as well (see text for details).  
 

hip or knee. Joint shape may therefore be critical in efficiently distributing these 

increased forces through the talocrural joint and reducing degenerative disease.   

Interestingly, though, there appears to be overlap in these strategies of ankle 

stability. Two fossil tali (KNM-ER 813 and KNM-ER 1464) that have quite keeled talar 

surfaces, also have an anterior talofibular ligament tubercle on their talar bodies. This 

suggests that when selection favored a flat talar surface in large bodied hominins, the 

presence of an anterior talofibular ligament may have been a feature already variably 

present in the hominin population and in place to compensate for the loss of bony 

reinforcement in the ankle.  

Testing hypotheses of the pattern of development in the hominin ankle is difficult. 

The hominin species designations listed in Table 6.2 make clear that few of the tibia and 

tali measured in this study have been confidently assigned to any one species, and thus it 

is difficult to follow the evolutionary trajectory of the ankle using hypothesized 

phylogenies. Because craniodental remains from both Homo and robust australopiths 

have been recovered from Plio-Pleistocene sites in East and South Africa, most of the 
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unassociated fossil tali and tibia listed in Table 6.2 cannot be confidently assigned to 

either lineage without bias or untested assumptions. The earliest specimens from 

Kanapoi, Kenya and Hadar, Ethiopia are most likely from A. anamensis and A. afarensis 

as indicated.  

The Member 4 hominins from Sterkfontein are probably assignable to A. 

africanus, though there may be a second species at this locality (Clarke, 1986; Clarke, 

1988; Clarke, 1994; Moggi-Cecchi et al., 1998; Lockwood and Tobias, 2002) and thus 

care should be taken in assuming these nine fossil tali and tibia are all from the same 

taxon. Furthermore, there is evidence that the southern Member 4 deposits are of a later 

age than the northern deposits (Kuman and Clarke, 2002). Thus, the StW 102 talus, from 

the southern grid X/47, may not be as old as the other tali and tibia. This hypothesis that 

the Member 4 fossils from Sterkfontein sample either multiple taxa or multiple time 

periods is consistent with the range of variation found in the morphology of the five tali 

studied here.  

Though it is argued that the KNM-ER 1500 tibia is associated with a robust 

australopithecine mandible (Grausz et al., 1988), certain identification of the fragmentary 

KNM-ER 1500 mandible is unclear to some (Wood and Constantino, 2007). The later 

specimens KNM-ER 803 and KNM-WT 15000 were found with craniodental remains 

and thus are confidently assigned to H. erectus. Suggestions that the OH 8 talus and OH 

35 tibia are associated with the craniodental remains of the H. habilis type specimen OH 

7 (Stern and Susman, 1982) are not supported with more detailed analyses. The OH 8 

foot does not have an epiphyseal fusion pattern that matches the development of the 

teenage OH 7 mandible (pers. obs.) and the OH 8 foot and OH 35 tibia, though similar in 
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size, are not similar enough in morphology to be from the same individual (Aiello et al., 

1998; Wood et al., 2000). Thus, these fossils may be from either P. boisei or H. habilis.  

Nevertheless, based on the current evidence, it is suggested that there are two 

possible scenarios for how the ankle evolved along the direct human lineage (Figure 

6.14). The first hypothesis suggests that the earliest hominin ankles were keeled at the 

tibiotalar junction, as in modern great apes and in the 4.1 mya A. anamensis tibia KNM-

KP 29285. More committed bipedalism in A. afarensis resulted in a mediolaterally flatter 

talocrural joint present in the Hadar hominins. Strong peroneals were recruited to resist 

inversion and prevent dislocation of the talocrural joint. The anterior talofibular ligament 

may have been variably present in A. afarensis  as well (Lovejoy et al., 1982). In this 

scenario, Homo, as represented by the 2.2 mya, mediolaterally flat talus from Omo, 

reduced reliance on the peroneal muscles and relied instead on the talofibular ligament to 

stabilize the ankle against inversion injury. The mediolaterally flat tali KNM-ER 5428, 

KNM-ER 803, and tibia KNM-WT 15000 are from descendents of this population and 

are ancestral to the modern human ankle. The keeled morphology present in most other 

hominin specimens is retained from the keeled A. anamensis distal tibia, or is an 

evolutionary reversal from the A. afarensis condition and may represent the robust 

australopithecine lineage. Adoption of this scenario would necessitate the increase in 

frequency of the anterior talofibular ligament in populations represented by the later 

keeled specimens KNM-ER 813 and KNM-ER 1464. This is especially the case if KNM-

ER 1464 and other fossils from Ileret 6A area are 1.56-1.6 million years old, as some 

suggest (Wood and Constantino, 2007), instead of the original suggestion of 1.7 million 

years old (Feibel et al., 1989). 
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Figure 6.14. Evolutionary scenarios for origin of anterior talofibular ligament. 
 

 
Figure 6.14. Two scenarios for the evolution of the anterior talofibular ligament. Scenario 
1 posits the flat surface of the talus as evolving in only one lineage and would imply that 
the KNM-ER 5428 Homo erectus talus descends from the Omo 323-76-898 talus and that 
the anterior talofibular ligament evolved independently in the keeled tali KNM-ER 813 
and KNM-ER 1464. The scenario on the right posits more homoplasy in the hominin 
talocrural joint and with a variably present anterior talofibular ligament becoming more 
common first in hominins with keeled tali, and then becoming fixed in later populations 
with flat talar surfaces (see text for more explanation).  
 

Given the evidence, a phylogenetically less parsimonious scenario than the one 

presented above may be more likely. The second scenario hypothesizes that the originally 

keeled talocrural joint morphology, as seen in the KNM-KP 29285 distal tibia evolved 

into the flat A. afarensis talocrural joint by 3.2 million years ago. This morphology 

evolved back into a joint with a keeled surface to stabilize the ankle in place of strong 

peroneal musculature in early Homo and its immediate ancestors. Peroneal reduction may 
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have been related to the evolution of an enlarged Achilles tendon and a more derived 

gastrocnemius musculature, which may have occurred in the genus Homo (Bramble and 

Lieberman, 2004). This hypothesis implies that a flat talocrural joint is not a 

synapomorphy of the genus Homo. Only with the evolution of larger body size in H. 

erectus did the talocrural joint evolve a mediolaterally flat morphology once again. The 

presence of a tubercle for the ATaFL on keeled specimens likely from the genus Homo, 

KNM-ER 813 and KNM-ER 1464, provides evidence for the hypothesis that several 

evolutionary reversals may characterize the shape of the talocrural joint in the direct 

human lineage. If this is the case, it will be exceedingly difficult to distinguish robust 

australopithecine tali and tibia from Homo tali and tibia prior to 1.6 mya.  

These hypotheses can further be tested with additional discoveries of fossil 

hominin tibia and tali, including full descriptions of the distal tibia A.L. 545-3 a large 

talus A.L. 333-147 from Australopithecus afarensis (Ward et al., 1998) and the tibia 

D3901 and talus D4110 from the early Homo site of Dmanisi (Lorkipanidze et al., 2007).  

 

Conclusion 

There is no evidence that the absence of an anterior talofibular ligament 

encourages talar tilting in non-human primates. Additionally, the CFL and PTaFL do not 

compensate for the absence of an ATaFL in a non-human primate. Thus, it is suggested 

that the angle of the talocrural joint and a keeled trochlear surface provide joint stability 

in primates lacking an ATaFL. All of the fossil tali and all but one of the fossil tibia 

studied have a human-like angle between the talocrural joint surface and the ankle axis of 

rotation. This result implies that the tibia was aligned perpendicular to the talus, and that 
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these hominins necessarily had a valgus knee adapted for bipedalism. This reorientation 

of the talocrural joint, however, left the ankle susceptible to inversion injuries, and Plio-

Pleistocene hominins may have evolved a keeled trochlear morphology to stabilize the 

joint. Differences between the morphology of fossil hominins and modern humans do not 

always mean differences in behavior, and may represent instead different solutions to the 

same evolutionary dilemma. The keeled morphology of hominin tali from the Plio-

Pleistocene may be an example of this. The evolution of large body size and forces 

imposed upon the ankle during long distance running may have selected for flatter talar 

surfaces, and ligamentous, rather than bony stabilization of the hominin ankle. This trade-

off of an ankle morphology equipped to distribute forces more efficiently through the 

joint at the expense of joint stability occurred in our ancestors roughly 1.6 million years 

ago, thereby rendering the modern human ankle particularly susceptible to ligament 

injury.   
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CHAPTER 7 
 

The evolution of midfoot stability and its relation to vertical climbing. Revisiting the 
“midtarsal break”. 

 

Abstract 

The midtarsal break was first described nearly 75 years ago to explain the ability 

of non-human primates to lift their heel independently of the rest of the foot. Since the 

initial description of the midtarsal break, the calcaneocuboid joint has been assumed to be 

the anatomical source of this motion. Recently, two studies have suggested that the 

midtarsal break may occur between the cuboid and the fifth metatarsal joint, rather than 

at the calcaneocuboid joint (D’Août et al., 2002; Vereecke et al., 2003). Data compiled 

from x-rays, dissections, manual manipulation of living primate feet, video of captive and 

wild anthropoids, EMG of chimpanzees, and osteological specimens concur that the 

midtarsal break is caused by flexion at both joints with the cuboid-metatarsal joint 

contributing roughly 2/3 of total midfoot flexion, and the calcaneocuboid joint only about 

1/3 of total midfoot flexion. Dorsal expansion of the distal articular surface of the cuboid 

and the proximal articular surface of metatarsal V, and the curved shape of the proximal 

articular surface of the fourth and fifth metatarsals and corresponding cuboid facets 

provide skeletal correlates for the presence of midfoot flexion at the cuboid-metatarsal 

joint. Study of hominin metatarsals from South Africa (StW 114/115 and StW 485), a 

fifth metatarsal from Kenya (KNM-ER 803), and the metatarsals and a cuboid from the 

OH 8 foot show little evidence for flexion at the cuboid-metatarsal joint. These results 
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suggest that hominins had already evolved a stable midfoot region well adapted for the 

push-off phase of bipedalism by at least 2.6 million years ago. Study of two 3.2 million 

year old 5th metatarsals of Australopithecus afarensis from Ethiopia are consistent with 

midfoot stability in this species as well. These data further illuminate the evolution of the 

longitudinal arch and show further evidence of constraints on the arboreal capacity in 

early hominins.   

 

Introduction 

 The primate midfoot is composed of several closely spaced joints that all 

experience some degree of motion in multiple planes (Figure 7.1). The subtalar joint, 

formed between the talus and the calcaneus contributes mostly to foot eversion and 

inversion, though some flexion-extension, and abduction-adduction also occurs at this 

joint (Wright et al., 1964; Close et al., 1967; Inman, 1976; Siegler et al., 1988; Donatelli, 

1990; Scott and Winter, 1991). The midtarsal joint, formed between the cuboid and 

calcaneus on the lateral side of the foot and the talus and navicular on the medial side of 

the foot, is also a major source of foot eversion and inversion (Manter, 1941), though 

abduction/adduction and dorsiflexion/plantarflexion is possible at the midtarsal joint 

(Czerniecki, 1988; Ouzounian and Shereff, 1989). Finally, the tarsal portion of the foot 

meets the metatarsals on the lateral side of the foot between the cuboid and 4th and 5th 

metatarsals, and on the medial side of the foot between the lateral, intermediate, and 

medial cuneiforms and the 3rd, 2nd, and 1st metatarsals respectively. Movement between 

the tarsals and metatarsals is primarily dorsiflexion/plantarflexion though some rotation is 

occurs at this joint (Ouzounian and Shereff, 1989; Blackwood et al., 2005). The anatomy  
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Figure 7.1. Comparative anatomy of the midfoot in humans (left) and chimpanzees 
(right).  

 
Figure 7.1. Hindfoot and midfoot skeletal elements of human (left) and chimpanzee 
(right). The subtalar joint is located between the talus and calcaneus. The calcaneocuboid 
portion of the transverse tarsal joint, and the cuboid-metatarsal portion of the 
tarsometatarsal joints are both indicated in the image. Note the small proximodistal 
distance between the calcaneocuboid and cuboid-metatarsal joints. This has made 
determining the anatomical position of the midtarsal break challenging.  
 

of the tarsal region of the foot and the binding longitudinal arch in humans results in a 

closed kinetic chain in which movement at a proximal joint necessarily results in 

movement at a more distal joint, and vice versa (Oatis, 1988; Huson, 2000; Hertel, 2002).  

During the initial propulsive stage of human walking, the heel and midfoot 

simultaneous lift resulting in flexion at the metatarsalphalangeal joint (Close, 1967; 
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Susman, 1983). However, during terrestrial walking in non-human primates, flexion of 

the foot occurs first at the midfoot before eventually shifting to the metatarsalphalangeal 

joint (Figure 7.2). This occurs somewhat among between plantigrade apes, who have heel 

contact during the contact and early stance phases of walking (Gebo, 1992; Schmitt and 

Larson, 1995), and cercopithecoids who do not. However, regardless of the role of the 

heel in walking, the midfoot makes contact with the ground during stance phase in both 

apes and cercopithecoids. This midtarsal break, also termed a “two stage heel lift” (Kidd, 

1993; 1998; 1999), has been observed across a range of non-human anthropoids (Elftman 

and Manter, 1935; Gebo, 1992; Schmitt and Larson, 1995; Meldrum, 1991; D’Aout et al., 

2002; Vereecke et al., 2003). Thus far, humans are the only primate shown to consistently 

lack a midtarsal break. It is assumed throughout this paper that the midtarsal break occurs 

in all catarrhines, and that its absence is derived.  

Although the midtarsal break has been studied primarily in the context of 

terrestrial locomotion, it may have significant implications for arboreal activity as well. It 

has been argued that the midtarsal break is an adaptation that allows climbing primates to 

have both the grasping forefoot required to hold onto a vertical substrate and the stable 

hindfoot necessary for propulsion during climbing bouts (Meldrum and Wunderlich, 

1998; Meldrum, 2002). Vertical climbing in large bodied primates is most efficiently 

accomplished by bringing the body close to the vertical substrate, thereby reducing the 

moment arm produced by a large body at a distance away from the tree (Preuschoft, 

1970; Cartmill, 1972; Cartmill, 1985; Preuschoft et al., 1992). Any motion that brings the 

animal closer to the tree will reduce the moment arm, and thus reduce the muscular force 

necessary to counteract this moment. For example, extreme dorsiflexion at the talocrural 
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Figure 7.2. The midtarsal break in chimpanzees and midfoot stability in humans. 
a.) 

 
b.) 

 
c.) 

 
Figure 7.2. Midtarsal break. a.) Drawing from Elftman and Manter (1935) illustrating the 
repositioning of the fulcrum of the foot from the heel to the metatarsophalangeal joint 
after initial push-off in humans (top), but an intermediate break at the transtarsal joint in 
chimpanzees. b.) This is demonstrated more clearly with video of a bonobo (Pan 
paniscus) from D’Août et al. (2002) contrasted with c.) film from a human foot captured 
for this study. Figures 7.2a and 7.2b reprinted with permission from Wiley-Liss, 
Inc.Wiley Publishing Inc., a subsidiary of John Wiley & Sons, Inc. 
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joint is an adaptation found in large-bodied apes in order to bring their bodies closer to 

the substrate during vertical climbing bouts (Chapter 2). This motion is not as extreme in 

cercopithecoids (Hirasaki et al., 1993) and is not possible without injury in modern 

humans (Begeman and Prasad, 1990; Parenteau et al., 1998). Although cercopithecoids 

do not climb vertically as often as apes do in the wild (Rose, 1977; Hunt, 1989; Hunt, 

1991; Gebo, 1996; Hunt, 2004), when they do so, they compensate for minimal 

dorsiflexion at the ankle by flexing the midfoot. This midtarsal break is present in 

vertically climbing apes too, though observations of wild chimpanzees suggest that they 

do not generate flexion in the midfoot until after maximum dorsiflexion at the talocrual 

joint, during the push-off phase of climbing (Chapter 2). Although the primary role of the 

midtarsal break may involve propulsion, it is hypothesized that the presence of a 

midtarsal break could assist in vertical climbing as an alternative strategy in species that 

are unable to hyperdorsiflex at the ankle (Figure 7.3).  

This hypothesis has relevance for interpreting the climbing abilities of early 

hominins. Australopiths were not able to hyperdorsiflex the ankle (Chapters 4 and 5). 

This, combined with the absence of a divergent toe and limited ability to invert the foot, 

suggests they were not adapted to vertically climb in the same way that modern apes 

climb. In the absence of extreme dorsiflexion and inversion, however, australopiths may 

still have brought their bodies closer to a tree trunk by employing the strategy used by 

cercopithecoids and flexing at the midfoot during vertical ascents. Furthermore, if 

australopiths had a midtarsal break, it would not only affect interpretations of their 

arboreal climbing abilities, but would also impact biomechanical reconstructions of  
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Figure 7.3. Climbing strategies in apes and monkeys. 

 
Figure 7.3. The two images on the left are stills from video taken of wild chimpanzees 
vertically climbing in the Kibale National Forest. An adult male is on the left, an adult 
female on the right. Notice the dorsiflexion at the talocrural joint in the chimpanzees and 
the absence of a midtarsal break. In contrast, the image on the right is from a vertically 
climbing cercopithecoid monkey from the Toledo Zoo. Note the weak dorsiflexion and 
the presence of a midtarsal break. All three images were taken during push-off of the 
opposite foot.  
 

terrestrial bipedal walking. Interpretation of this motion in extant and extinct anthropoids, 

however, relies on accurately assessing the joints where this motion actually occurs.  

 The midtarsal break was initially described by Elftman and Manter (1935) in the 

first paper to assess the stress distribution under the chimpanzee foot during bipedal and 

quadrupedal walking (Figure 7.2a). Based on footprints, these authors noted that 

chimpanzees exert pressure on the navicular, first cuneiform, and base of the fifth 

metatarsal during walking, whereas humans, equipped with a longitudinal arch, do not 

experience contact between the midfoot and the ground. In addition to the absence of an 

arch, chimpanzees also have a more mobile midfoot. Elftman and Manter (1935) 

suggested that when the chimpanzee heel lifts off the ground, the midfoot remains in 

contact with the ground. Although Elftman and Manter (1935) observed that when the 

chimpanzee heel lifts off the ground, there is increased stress under the 5th metatarsal, 

they suggested that this was a result of motion at the transverse tarsal joint and made no 

mention of the tarsometatarsal joint. A pilot study of chimpanzee and human locomotion 
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using video data and radiographs of the feet of anesthetized chimpanzees suggested that 

midtarsal flexion in the ape occurs at the talonavicular joint on the medial side of the foot 

and that this flexion exceeded that possible at the calcaneocuboid joint (Meldrum and 

Wunderlich, 1998).  

 Important skeletal differences are present in the human and the chimpanzee 

transverse tarsal joint. Elftman (1960) demonstrated that the axes of the transverse tarsal 

joint in humans, though aligned during pronation, became incongruent during supination, 

thus locking the transverse tarsal joint and preventing movement. This converts the 

human midfoot into a rigid lever that is biomechanically more efficient and more stable 

during the initial push-off phase of walking than is a foot with a mobile midfoot region 

(Sammarco, 1989). Chimpanzees, however, have a transverse tarsal region with aligned 

axes whether the foot is in supination or pronation, resulting in constant midtarsal 

mobility (Close, 1967; Langdon et al., 1991). 

The stability of the midtarsal region is partially achieved in humans by a 

pronounced flange of the cuboid that is located more plantarly and medially than the case 

in non-human primates. This projection of bone locks into a corresponding facet on the 

calcaneus during supination in humans. No such locking mechanism occurs in non-

human primates (Bojsen-Moller, 1979; Lewis, 1980; Susman, 1983; Kidd, 1998; 

Harcourt-Smith, 2002).  

Ligaments and the soft tissue components of the longitudinal arch have also been 

implicated in the differing degrees of mobility at the midtarsal region in humans and non-

human primates. Bojsen-Møller (1979) noted that the long plantar ligament and plantar 

aponeurosis both restrict motion in the human midfoot, but are absent from the non-
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human primate foot. Additionally, after the plantar calcaneonavicular ligaments, long and 

short plantar ligaments and bifurcate ligaments were cut in human cadavers, the 

transverse tarsal joint had a greater range of motion, including dorsiflexion (Manter, 

1941). Motion was especially freed when the calcaneo-navicular portion of the bifurcate 

ligament was severed. Gomberg (1985) found that the posterior portion of the long 

plantar ligament, present in humans but not the great apes, prevents dorsiflexion at the 

transverse tarsal joint.  

Recently, the hypothesis that the midtarsal break occurs at transverse tarsal and 

more specifically the calcaneocuboid joint, has been challenged. In a study of joint 

kinematics in captive bonobos (Pan paniscus) D’Aout et al. (2002) suggested that the 

midtarsal break may be occurring at the more distal tarsometatarsal joint rather than the 

transverse tarsal. Vereecke et al. (2003) also challenged the idea that the midtarsal break 

occurs between the cuboid and the calcaneus using plantar pressure data on captive 

bonobos. Based on both the presence of pressure under the 5th metatarsal after initial heel 

lift, and the manipulation of osteological specimens, Vereecke et al. (2003) suggested 

that it was more likely that this midfoot motion occurs at the tarsometatarsal joint than at 

the transverse tarsal.  

Determining the exact anatomical location of the midtarsal break has implications 

for understanding the biomechanics of terrestrial and arboreal locomotion both in extant 

primates, and also extinct apes and hominins. Although it has been suggested that 

australopiths had more midtarsal mobility than modern humans (Sarmiento, 1991; 

Gomberg and Latimer, 1984; Harcourt-Smith, 2002), this would not necessarily imply the 

presence of a midtarsal break if, in fact, the midtarsal break occurs at the tarsometatarsal 
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joint and not the transverse tarsal joint. Yet, finding evidence for a midtarsal break in 

australopiths would have important ramifications for interpreting both their bipedal 

biomechanics and their climbing capacity.  

Here, I attempt to determine precisely where the midtarsal break occurs in non-

human primates. I test the hypothesis that the midtarsal break occurs exclusively at the 

calcaneocuboid joint on the lateral side of the foot in non-human primates with data 

obtained from radiographs, dissections, video of ape and cercopithecoid feet with a mark 

on the tuberosity of the 5th metatarsal, EMG data obtained from chimpanzee subjects, and 

skeletal specimens. Using skeletal correlates of this foot motion, I will also investigate 

whether extinct hominins were capable of midfoot flexion.  

 

Materials and Methods 

X-rays 

  Both lower limbs were obtained from ten sub-adult olive baboons (Papio anubis) 

which had completed a research protocol approved by the University of 

Michigan's Institutional Animal Care and Use Committee. These animals were between 

two-three years old, and thus still had unfused epiphyses on the distal fibula and tibia. 

The animals weighed an average of seven kg (range 6.0- 8.4 kg). A foot from an adult 

male gorilla who had died during a veterinary procedure was also x-rayed. The feet were 

positioned in lateral view and xrays were taken using a MinXray HF 100/30 at 50 kVDC 

for 0.3mAs. Radiographs were taken of the right foot of each individual in a neutral 

position with the most plantar aspect of the foot forming a ninety degree angle with the 

long axis of the tibia. Radiographs were then taken of the same feet with the heel elevated 
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to approximately 20 degrees from the horizontal plane of the plantar aspect of the foot. 

This was achieved by manually exerting a tensile force on the proximal tibia (thus lifting 

the calcaneus) while simultaneously holding the metatarsophalangeal joint to prevent 

movement there. Two approaches were employed: one consisted of manually holding the 

metatarsophalangeal joint, and the other bound the toes to a wooden board using plastic 

tie wraps. The two methods produced similar results. Importantly, these methods did not 

appear to influence whether the calcaneocuboid or tarsometatarsal joint was more 

involved in flexing the midfoot. The gorilla foot could not be flexed to 20 degrees and 

instead was flexed to only about 5 degrees. This may have been due in part to the 

inability of this author to produce the 500 lbs. of pressure that would have been applied to 

the gorilla foot in life.  

 

Dissections 

 Ten, right baboon feet and the right gorilla foot were dissected. The 5th metatarsal 

was felt through the skin on the lateral side of the foot and a small area of the skin 

removed to reveal the peroneal tendons. With the feet held to a horizontal surface, the 

tibia was slowly elevated and 2 digital photographs were taken in lateral view. The first 

photograph captured the maximum dorsiflexion at the calcaneocuboid joint and the 

second the maximum total flexion of the midtarsal region of the baboon foot. Angles 

relative to the horizontal plantar aspect of the foot were measured using the angle tool in 

the program Image J.  

The tendons of peroneal brevis and longus were then cut and the calcaneocuboid 

articulation and the cuboid-metatarsal V articulations were isolated without removing any 
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ligamentous tissue. Photographs were again taken, imported into Image J, and angles 

were measured at both the calcaneocuboid and the cuboid-metatarsal V joints. These did 

not differ from the angles taken with the peroneal tendons still attached (t-test paired two 

sample for means : t=0.34, p=0.74).  

 

Video analysis 

Articulated osteological specimens of chimpanzees (Pan troglodytes), gorillas 

(Gorilla gorilla), and a cercopithecoid (Papio anubis) were used to predict where the 

midtarsal break should be observed if it occurred at the calcaneocuboid joint and where it 

should be observed if it occurred at the more distal tarsometatarsal joint. The lateral 

aspect of the cuboid tapers to a very narrow area of bone in the non-human hominoids 

and cercopithecoids causing the calcaneocuboid and cuboid-metatarsal V joints to be 

quite close to one another in lateral view (Figure 7.4). This anatomy is partially why it 

has been challenging to determine precisely where the mid-tarsal break motion occurs in 

non-human primates. However, it can be predicted from these osteological specimens 

that foot flexion proximal to the tuberosity of the 5th metatarsal implies movement at the 

calcaneocuboid joint whereas flexion distally to the tuberosity implies the involvement of 

the tarsometatarsal joint.  

Primates were videotaped with a Canon GL2 digital video recorder. The video 

captured frames every 70 msec. The film was imported into Windows Movie Maker and 

examined frame by frame to assess where the midtarsal break occurs relative to the 

position of the tuberosity of the 5th metatarsal.   
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Figure 7.4. Chimpanzee foot indicating close position between calcaneocuboid joint and 
cuboid-metatarsal joint on lateral side of foot. 

  
Figure 7.4. Chimpanzee foot in lateral view positioned to model the midtarsal break if it 
occurred at the cuboid-metatarsal joint. Notice that flexion at the calcaneocuboid joint 
would be proximal to the tuberosity of the 5th metatarsal whereas flexion at the cuboid-
metatarsal joint would be distal to the tuberosity.  
  

In one protocol, wild chimpanzees were filmed at the Ngogo study site in the 

Kibale National Forest, Uganda. Twenty-five sequences of walking were video recorded. 

These were mostly of adult male chimpanzees walking in lateral, posterolateral, and 

posterior view. Because the position of the tuberosity of the 5th metatarsal could only be 

estimated on the wild chimpanzees, only qualitative observations were made on these 

data.  

In the second protocol, several captive primates were analyzed. The right feet of a 

male and female adult chimpanzee (Pan troglodytes), a male and female adult lowland 

gorilla (Gorilla gorilla gorilla), two adult female mandrills (Mandrillus sphinx), and 

three adult lion-tailed macaques (Macaca silenus) at the Detroit Zoo were measured 

while the animals were under anesthesia. The tuberosity of the 5th metatarsal was felt 
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through the skin on the lateral side of the foot and the ratio of the total foot length that 

was composed of the calcaneus and cuboid was measured. Manipulation of the foot was 

attempted to ascertain whether flexion occurred in the region of the metatarsal V 

tuberosity or more proximally at the calcaneocuboid joint. Finally, a circular white mark 

was placed directly on the skin overlaying the tuberosity of the 5th metatarsal. After the 

animals awoke, video was captured in lateral view of the chimpanzees, gorillas, 

mandrills, and macaques engaging in quadrupedal locomotion.  

 

Ligaments, musculoskeletal anatomy, and EMG 

The effect of muscles and ligaments on the midtarsal break was assessed based on 

data from the literature and on the results of gross dissections of the ten baboon feet, the 

dissections of a male gorilla from the Cincinnati Zoo and a chimpanzee of unknown 

provenience at the Museum of Comparative Zoology at Harvard University, and five 

human cadavers from the Department of Anatomy at Wayne State University in Detroit, 

MI. These data were supplemented with Museum osteological specimens from the 

Harvard Museum of Comparative Zoology and the Cleveland Museum of Natural History 

in which the ligamentous tissue was still present and was still holding the foot bones in 

their anatomical positions.  

Muscle activity patterns during quadrupedal walking in chimpanzees were 

obtained from raw EMG data provided by Dr. Jack Stern at the State University of New 

York, Stony Brook. The experimental protocol for obtaining EMG data on the lower 

limbs of captive chimpanzees can be found in Jungers et al. (1983) and Jungers et al. 

(1993). The video produces simultaneous footage of locomotion of the chimpanzee with 
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raw EMG activity from four electrode channels superimposed on the screen. Video was 

viewed frame by frame to assess muscle activity prior to, during, and after heel lift in 

quadrupedally walking chimpanzees. Activity of the tibialis posterior muscle was 

analyzed from data collected on a young male chimpanzee on June 4, 1981. 

Gastrocnemius/soleus activity was assessed from two young male chimpanzees studied in 

July of 1997. Activity of the peroneus longus muscle was taken from published results 

from EMG studies of chimpanzees at SUNY Stony Brook (Stern and Susman, 1983; 

Reeser et al., 1983).  

 

Skeletal and fossil specimens 

The calcaneus, cuboid, and 4th and 5th metatarsals of Pan troglodytes (n=33) and 

Gorilla gorilla (n=29) were studied at the Cleveland Museum of Natural History. The 

Libben Paleoindian collection housed at Kent State University and the Todd-Hamman 

collection at the Cleveland Museum of Natural History served as the Homo sapiens 

comparative sample (n=31). Fossil cuboids and metatarsals of the hominoids Proconsul 

nyanzae (KNM-RU 5872) and Nacholapithecus kerioi (KNM-BG 35250) were studied at 

the Kenya National Museum, as was a Homo erectus 5th metatarsal (KNM-ER 803). 

Fossil casts of the 5th metatarsals of Australopithecus afarensis (A.L. 333-13, and A.L. 

333-78) were made available for study by the Cleveland Museum of Natural History and 

the Harvard Peabody Museum. Original hominin 4th (StW 485) and 5th metatarsals (StW 

114/115) from Sterkfontein were studied at the University of Witwatersrand in 

Johannesburg, South Africa. The calcaneus, cuboid, and 4th and 5th metatarsals of OH 8 
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individual were studied at the Tanzania National Museum and House of Culture, Dar es 

Salaam.   

The length and width of the cuboid articular facets for the 4th and 5th metatarsals 

were measured with digital calipers to the nearest 0.1 mm. This was done for the cuboid 

articular facet on the proximal surface of the 4th and 5th metatarsals as well. Additionally, 

the shape of the joint surfaces was assessed using a carpenter’s contour guide. The joint 

surfaces of the 4th and 5th metatarsals and cuboid were pressed into the carpenter’s 

contour guide, and the guide was photographed with a Nikon D100 digital camera. The 

images were then imported into the program Image J and the shape of the articular 

surface quantified as a ratio of the height or depth of the articular surface relative to the 

overall dorsoplantar height of the joint facet. Fossils were not measured using the 

carpenter’s contour guide. Instead, 3D models of the fossils were obtained by scanning 

the specimens with a NextEngine 3D laser scanner. The 3D fossil models were oriented 

using the program ScanStudio and then cropped so that the height or depth of the 

articular surface could be isolated in the same plane that the extant specimens were 

measured with the carpenter’s contour guide. A still frame of the isolated articular surface 

was taken and imported into Image J where the height and depth of the articular surface 

was measured relative to the overall dorsoplantar height of the joint surface. Four human 

and chimpanzee 4th and 5th metatarsals were measured using both the carpenter’s contour 

guide and the 3D scanner method and the results obtained were statistically identical (t-

test paired sample for means test: t=0.38, p=0.71).  

The dorsal surfaces of the cuboid and the 5th metatarsal were also examined 

closely to assess whether the articular surface between these two bones extended 



 286

superiorly onto the dorsal surface of the bone. Categories established were “no”, “yes”, 

and “slightly” if it appeared that the articular surface bent onto the dorsal surface, but not 

in an obvious manner.  

Significance was assessed using Fisher’s least squares difference (LSD) test for 

planned comparisons, after first performing a one-way analysis of variance (ANOVA) 

test.  

 

Results  

X-rays of baboons and gorilla 

 The ten X-rays of baboon feet flexed at the midfoot all consistently demonstrated 

that relative to the neutral position, the majority of movement during the “midtarsal 

break” occurred at the cuboid-metatarsal joint, though some motion did occur at the 

calcaneocuboid joint as well (Figure 7.5a). The calcaneus moved to a position slightly 

more superiorly relative to the cuboid when the midfoot was elevated; however, the 

majority of the midfoot motion occurred by the cuboid shifting to a significantly more 

superior position relative to the 5th metatarsal. This pattern occurred in all 10 X-rayed 

baboon feet.  

 The X-ray of the gorilla foot is more difficult to interpret. In lateral view, it is not 

clear whether the cuboid or the proximal metatarsals moved dorsally. In superior view, 

the cuboid overlays the metatarsals in neutral position but a small amount of flexion 

(about 5 degrees) at the midfoot caused the cuboid and the metatarsals to become more 

aligned (Figure 7.5b). It is unknown whether a greater applied force would have resulted  
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Figure 7.5a. Radiographs of baboon feet before and after midfoot flexion. 

 

 
 
Figure 7.5b. Radiographs of gorilla feet before and after midfoot flexion. 

 
Figure 7.5. a.) X-rays of baboon (Papio anubus) foot in lateral view in neutral position 
(top) and during midfoot flexion (bottom). The straight arrows indicate the 
calcaneocuboid joint while the diamond-shaped arrows indicate the cuboid-metatarsal 
joint. Note the movement of the cuboid onto the superior surface of the 5th metatarsal in 
the baboon during midfoot flexion. b.) X-rays of gorilla foot in superior view in neutral 
position (top) and during midfoot flexion (bottom). 
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Figure 7.6. Dissection of baboon foot indicating location of midtarsal break. 

 
Figure 7.6. Dissected baboon (Papio anubus) foot in lateral view with the tibia being 
manually lifted. The tuberosity of the fifth metatarsal is in contact with the tabletop, with 
the majority of midfoot flexion happening at the cuboid-metatarsal joint, rather than the 
calcaneocuboid joint.  
 

in more flexion and if this flexion would have occurred more proximally at the 

calcaneocuboid joint, or the cuboid-metatarsal joint.  

 

Dissections of baboon feet 

 Dissections of right feet of the baboons also suggest that both joints may be 

involved in producing the cumulative midfoot flexion. When tension was applied to the 

proximal tibia and the calcaneus lifted off a horizontal surface, flexion occurred first at 

the calcaneocuboid joint with a magnitude of 9.2˚ ± 1.5˚. When tension continued to be 

applied to the tibia and the calcaneus further lifted from the horizontal surface, flexion 

shifted from the calcaneocuboid joint to the cuboid-metatarsal joint and become 
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significantly more pronounced. Flexion at the cuboid-metatarsal joint amounted to 20.6˚ 

± 2.3˚, or 69.1% of the total flexion at the midfoot (Figure 7.6).  

The baboon feet used in this study were on average 162.1 ± 13.3 mm from the 

heel to the tip of the longest toe. The average distance to the calcaneocuboid joint was 

45.6 ± 3.3 mm, or 28.2% ± 1.5% of the total foot length. The average distance to the 

cuboid-metatarsal joint was 56.6 ± 3.8 mm, or 35.0% ± 1.9% of the total foot length. 

There was no overlap between the percentage of foot length to the calcaneocuboid and 

cuboid-metatarsal joints among the different baboons. Thus, the shortest percent of total 

foot length to the cuboid-metatarsal joint in any of the baboons was still longer than the 

longest percent of total foot length to the calcaneocuboid joint. Unfortunately, few data 

on terrestrial walking in baboons exist to compare these results. Using six stills taken of 

two different baboons by Muybridge (1957), the midtarsal break occurs between roughly 

32-42% of the total foot length, although initial foot flexion can be detected in a region 

about 25% of the total foot length. This result is consistent with initial slight movement 

occurring at the calcaneocuboid joint, and subsequently shifting to the more distally 

located tarsometatarsal joint. Some care should be taken, however, in interpreting these 

results as the dissected baboons were sub-adult Papio anubis while the baboons 

photographed by Muybridge (1957) were adult chacma baboons (Papio ursinus).  

 

Study of live chimpanzee and gorilla feet 

Unobscured video of terrestrially knuckle-walking wild chimpanzees was difficult 

to obtain. The Kibale forest is dense with underbrush and it was not possible to obtain a 

clear sequence of terrestrial walking in lateral view. However, video analysis of  
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Figure 7.7. Location of midtarsal break in terrestrially walking cercopithecoids, apes and 
human 
a.) 

 
 
b.) 

 
 
c.) 

 
 
d.) 

 
 
e.)  
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f.) 

 
 
g.) 

 
 
h.) 

 
Figure 7.7. Stills of video taken of terrestrial walking in wild and captive primates. For all 
of the images, the first frame is stance phase, the second is initial heel lift, the third is 
continued heel lift, and the final frame is push-off. The frames are in sequence with 70 
msec between each.  a.) Adult male chimpanzee walking in Ngogo study area of Kibale 
National Park. b.-e.) Adult male chimpanzee, adult female chimpanzee, and adult male 
and female gorillas at Detroit Zoo with 5th metatarsal tuberosity marked. f.) Adult female 
Mandrillus and g.) Adult female Macaca silenus both from the Detroit Zoo and the 5th 
metatarsal tuberosity marked. h.) Adult female human with tuberosity of 5th metatarsal 
marked. Frames 1, 2, and 4 do not differ between the apes and the human. However, in 
frame 3 midfoot flexion is clear in the apes but not the human. Notice that the midfoot 
flexion generally occurs on or distally to the white spot indicating the position of the 
tuberosity of the 5th metatarsal in the chimpanzees and gorilla. This suggests motion at 
the cuboid-metatarsal joint. Likewise in the cercopithecoids, digitigrades postures and 
midfoot flexion during push-off phase of walking appear to be a function of both 
calcaneocuboid and cuboid-metatarsal flexion.  
 

chimpanzees in posterolateral and posterior view did reveal that wild chimpanzees have a 

midtarsal break while walking. It is also apparent from the video data that during initial 

heel lift, there is a proximally placed midtarsal break of minimal magnitude. This midfoot 

flexion then shifts slightly distally and is more pronounced as the chimpanzee enters the 

later stages of stance phase (Figure 7.7a). This observation appears to be consistent with 
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the hypothesis that the midtarsal break begins with slight dorsiflexion at the transverse 

tarsal joint, but then shifts distally to the tarsometatarsal joint where more flexion is 

possible.   

The tuberosity of the 5th metatarsal could be easily palpated through the skin on 

the lateral aspect of both feet of the male and female chimpanzees and gorillas, the two 

female mandrills and three female macaques from the Detroit Zoo. The approximate 

length of the foot from heel to the tip of the 5th digit was 20 cm for the female 

chimpanzee and 21 cm for the male chimpanzee (Table 7.1). This same measurement was 

22 cm for the female gorilla and 29 cm for the male gorilla. The lateral aspect of the 

female mandrill feet were both 16 cm, and the three female macaque feet were 14 cm, 13 

cm, and 13 cm respectively. The tuberosity of the 5th metatarsal was located 7 cm from 

the heel in the female chimpanzee; 7.5 cm from the heel in the male chimpanzee; 9 cm 

from the heel in the female gorilla and 12 cm from the heel in the male gorilla; 5 cm in 

one mandrill and 5.5 cm in the other; 5 cm in the larger macaque and 4 cm in the two 

smaller macaques. Thus, of the total length of the foot, the tuberosity of the fifth 

metatarsal is located 35.7% and 35% in male and female chimpanzees respectively, in 

male and female gorillas 41.4% and 40.9% respectively, 31.3% and 34.4% in the two 

female mandrills, and 35.7%, 30.8% and 30.8% in the three macaques. Manually, the foot 

of both chimpanzees and gorillas could be moderately flexed in a region only a few 

millimeters distal to the location of the tuberosity of the 5th metatarsal whereas the region 

proximal to the tuberosity was more rigid. The mandrill and macaque feet were more 

mobile than the ape feet at both the calcaneocuboid and cuboid-metatarsal joints.  
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Table 7.1. Proportions of lateral column of the primate foot. 
Species Sex Length of 

lateral side of 
foot (cm) 

Distance from 
heel to 5th MT 
tuberosity 
(mm) 

% of foot 
length to 5th 
MT tuberosity 

Pan troglodytes Male 21 7.5 35.7% 
Pan troglodytes Female 20  7 35.0% 
Gorilla gorilla 
gorilla 

Male 29 12 41.4% 

Gorilla gorilla 
gorilla 

Female 22 9 40.9% 

Mandrillus 
sphinx 

Female (n=2) 16 5.3 32.9% ± 2.2% 

Macaca silenus Female (n=3) 13.3 4.3 32.4% ± 2.8% 
Papio anubis 
(dissections) 

Mixed (n=10) 16.2 ± 1.3 5.7 ± 0.3 35.0% ± 1.9% 

 

 Four sequences of quadrupedal walking in chimpanzees (two from the male, two 

from the female), two sequences of walking in both male and female gorillas, two 

sequences of walking in the female mandrills, and two sequences in the macaques were 

captured in which the white spot indicating the position of the tuberosity of the 5th 

metatarsal was visible, the foot was in lateral orientation, and the primates had undergone 

a fully weight-bearing stance phase complete with a midtarsal break. Instead of moving 

directly from a heel-flat, plantigrade position to flexion at the midfoot, the chimpanzee 

foot appeared to “roll” during heel lift through push-off phase of walking with an initial 

slight flexion occurring proximally to the tuberosity of the 5th metatarsal (calcaneocuboid 

joint) and then smoothly transitioning to a more pronounced flexion in a position more 

distal to the tuberosity mark (tarsometarsal joint). The transition from this joint to the 

metatarsalphalangeal joint was also done in a fluid manner (Figure 7.7b-c). The gorilla 

feet (7d-e) appeared to undergo the same series of midfoot motions as the chimpanzee 

foot during quadrupedal walking. As with the baboon, it is clear from the chimpanzee and 
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gorilla walking sequences that the midtarsal break is initiated with slight (~10˚) flexion 

first at the calcaneocuboid joint and then augmented with a higher magnitude of flexion 

(~20˚) at the tarsometatarsal joint. The mandrill and macaque heel begins in a more 

elevated position than what is observed in African apes and this appears to occur 

primarily at the calcaneocuboid joint (Figure 7.7f-g). However, as seen in the ape feet, 

the midtarsal break shifts to the more distal cuboid-metatarsal joint as motion continues. 

Motion observed in gorilla, chimpanzee, mandrill and macaque feet contrasts with that 

shown by the human foot (Figure 7.7h), which establishes a fulcrum at the 

metatarsophalangeal joint just after heel lift, by-passing the midfoot flexion seen in the 

ape feet.  

 

Ligaments 

 Ligaments crossing either the calcaneocuboid joint or the tarsometatarsal joint on 

the plantar aspect of the foot would limit flexion at either joint. Therefore, the presence or 

absence of particular ligaments in this region of the foot may provide additional evidence 

for the location of the majority of flexion during the midtarsal break. Soft tissue that 

crosses the calcaneocuboid joint in humans includes the plantar aponeurosis, long plantar 

ligament, and short plantar ligament. Of these, only the short plantar ligament is present 

in non-human primates; however, this ligament is particularly strong in chimpanzees, 

gorillas, and orangutans (Gomberg, 1985) and was also strong in the dissected baboon 

and gorilla feet from this study. Lewis (1980) described this ligament as “massive” in 

chimpanzees. Given the size, strength, and location of this ligament, it is difficult to 

conceive that this ligament would permit 30˚ of flexion between the calcaneus and the 
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cuboid.  In fact, Grand (1967) suggested that the presence of this ligament in the foot of 

the slow loris would inhibit flexion of the midfoot at the calcaneocuboid joint. 

Furthermore, manual manipulation of the dissected baboon, chimpanzee, and gorilla feet 

suggests that the short plantar ligament restricts hyperflexion of the calcaneocuboid joint. 

The long plantar ligament in humans continues distally and attaches to the base of the 

metatarsals, preventing flexion at the tarsometatarsal joint. The long plantar ligament 

does not extend this far distally in non-human primates (Gomberg, 1985; pers. obs.), and 

would not restrict movement at the cuboid-metatarsal joint. The tarsometatarsal joint is 

reinforced on the plantar aspect of the foot only with the small and more pliable 

tarsometatarsal ligaments. Manual manipulation of dissected non-human primate feet 

suggests that this ligament is not a strong deterrent to hyperflexion of the midfoot at the 

tarsometatarsal joint.  

 

Musculoskeletal anatomy and EMG results 

 Muscles crossing either the calcaneocuboid or cuboid-metatarsal joints can assist 

or restrict movement at these joints as well. Because the midtarsal break is observed 

during heel lift, it is probable that the gastrocnemius/soleus complex is active. However, 

additional lower limb muscle activity can influence the timing and location of midfoot 

flexion if the tendon of the muscle in question is in the extensor compartment and thus 

enhances midfoot flexion upon activation, or in the flexor compartment and thus inhibits 

midfoot flexion. An ideal muscle to study would cross the calcaneocuboid joint but not 

the cuboid-metatarsal joint.  
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Data from the literature (Swindler and Wood, 1982; Aiello and Dean, 1990) and 

dissection of the muscles and tendons of the lower limb of baboons, humans, a 

chimpanzee, and a gorilla demonstrate that most lower limb muscles cross both the 

calcaneocuboid and cuboid-metatarsal joints and/or the regions of the foot that contain 

these joints. These include the following extensor compartment muscles: anterior tibialis, 

extensor digitorum longus, extensor digitorum brevis, peroneus tertius, peroneus brevis 

and the following flexor compartment muscles: flexor digitorum longus, flexor digitorum 

brevis, abductor digiti minimi, and quadratus plantae. The peroneus tertius and peroneus 

brevis muscles attach to the base of the 5th metatarsal and thus would enhance cuboid-

metatarsal motion, but because the tendons also cross the calcaneocuboid joint, activity of 

these muscles would promote flexion at this joint as well.  

Only the peroneus longus and the posterior tibialis cross the calcaneocuboid joint 

but not the cuboid-metatarsal joint in any substantial manner. The peroneus longus 

muscle originates on the proximal portion of the lateral fibula, its tendon curls around the 

peroneal groove of the fibula, and inserts on the plantar aspect of the medial cuneiform 

and first metatarsal via a groove in the plantar cuboid. It is a major everter of the foot 

(Aiello and Dean, 1990) and contributes to adduction of the hallux during the push-off 

phase of walking (Reeser et al., 1983; Susman and Stern, 1984). Because the peroneus 

longus inserts plantarly, simultaneous contraction of the gastrocnemius/soleus complex 

and the peroneus longus would inhibit flexion at the calcaneocuboid joint. Likewise, the 

tendons of the posterior tibialis are located on the plantar aspect of the foot and thus 

activity of this muscle with the gastrocnemius/soleus would inhibit flexion of the 

calcaneocuboid joint. The posterior tibialis originates on the proximal aspect of the 
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posterior tibia, interosseous membrane, and fibula. The tendon enters the foot via the 

malleolar groove of the tibia and inserts primarily on the navicular tuberosity, all three 

cuneiforms and the cuboid. Fibers can extend distally to the bases of the lateral four 

metatarsals, though this comprises a relatively small component of the insertion area for 

the posterior tibialis.  

In humans, all three muscles are active during the late stance phase into the early 

heel off phase of walking (Reeser, et al., 1983) though with more resolution it appears 

that the peroneus longus is active only moments prior to the tibialis posterior and 

gastrocnemius/soleus (Suzuki, et al., 1985) during the late stance phase. In chimpanzees, 

the peroneus longus muscle is not active at all during terrestrial locomotion (Stern and 

Susman, 1983). Although no EMG data is available on the tibialis posterior and 

gastrocnemius/soleus in the same animal, analysis of EMG on two different chimpanzees 

reveals that the triceps surae is active during stance phase and into the initial phase of 

heel off (Figure 7.8). The posterior tibialis is also active during late stance phase into heel 

off thus providing evidence that the two muscles are simultaneously active during 

quadrupedal walking in chimpanzees (Figure 7.8). Importantly, this simultaneous muscle 

activity occurs precisely when the midtarsal break is observed in lateral view. Given that 

simultaneous activity of these muscles would restrict flexion of the midfoot at the 

calcaneocuboid joint, but not the tarsometatarsal joint, this EMG data provides additional 

evidence that the midtarsal break occurs primarily at the tarsometatarsal joint.  

Skeletal specimens 

Estimation of joint mobility from osteological specimens suggested that the tarsal 

region of non-human primates facilitated more flexion and extension than the same  
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Figure 7.8. EMG of chimpanzees indicating activity of triceps surae and posterior tibialis 
during push-off phase of quadrupedal walking. 

 
Figure 7.8. Stills from EMG video of chimpanzees terrestrially walking at SUNY Stony 
Brook. Frames were selected because midfoot flexion is occurring for the right foot in 
both chimpanzees. The chimpanzee at the top has activity in all 4 EMG electrodes, 
indicating that the triceps surae is active during push-off. The chimpanzee at the bottom 
has activity in the bottom two electrodes, indicating maximum activity of the posterior 
tibialis muscle.  
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region in human bones, and more flexion was possible between the cuboid and 

metatarsals than between the cuboid and the calcaneus for all primate feet studied. A 

skeletal correlate of the movement between the cuboid and metatarsals is the extension of 

the articular surface onto the dorsal surface of the 5th metatarsal and the cuboid. These 

were found in many non-human primate specimens. This articular extension can be 

described as a lip of bone that curls from the most superior aspect of the joint onto either 

the cuboid or the fifth metatarsal. Often, it is simply an extension of an already convex 

joint surface. The joint extension does not extend very far proximally (on the 5th 

metatarsal) or distally (on the cuboid), but the presence of this articular extension permits 

a considerable amount of flexion between these bones during manipulation of prepared 

specimens. It is important, however, to note that there is variation in the presence and 

degree of development of the articular extension, and this feature can occur in human 

specimens. For the cuboid, this extension was present in 94% of chimpanzees (n=33), 

72% of gorillas (n=29), and 45% of humans (n=31). On the 5th metatarsal, a dorsally 

located articular extension was present on 73% of chimpanzee bones, 79% of gorillas, 

and 26% of humans.  

 Gorillas and chimpanzees are statistically identical for the shape of the articular 

surface of the 4th metatarsal (p=0.42). This articular facet is strongly convex in 

chimpanzees and gorillas, extending 16.2% ± 4.4% and 17.2% ± 4.9% of the total height 

of the facet respectively (Figure 7.9). This measure is only 5.2% ± 5.3% in modern 

humans, which is significantly flatter than the 4th metatarsal facet in African apes 

(p<0.001).   
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Figure 7.9. Shape of the cuboid facet on the proximal 4th metatarsal 
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Figure 7.9. The y-axis is the ratio of the height or depth of the proximal metatarsal facet 
relative to its dorsoplantar width. A positive value is convex, a negative is concave. 
Boxplots show the median (black bar), interquartile ranges (blue/gray), and overall 
ranges of the data. Outliers defined as greater than 1.5 times the interquartile range are 
shown as circles. Humans tend to have flatter cuboid facets on the 4th metatarsal, whereas 
chimpanzees and gorillas have more convex facets. The OH 8 and StW 485 4th 
metatarsals have flat human-like proximal facets.  
 

Likewise, chimpanzees and gorillas have 5th metatarsal facets that are statistically 

indistinguishable in convexity 10.6% ± 5.4% and 8.4% ± 5.5% of the width of the facet 

respectively (p=0.11). In humans, the 5th metatarsal base is significantly flatter (p=0.001) 

measuring 3.9% ± 4.6% of the total height of the facet (Figure 7.10).   
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Figure 7.10. Shape of the cuboid facet on the proximal 5th metatarsal 
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Figure 7.10. The y-axis is the ratio of the height or depth of the proximal metatarsal facet 
relative to its dorsoplantar width. A positive value is convex, a negative is concave. 
Boxplots show the median (black bar), interquartile ranges (blue/gray), and overall 
ranges of the data. Outliers defined as greater than 1.5 times the interquartile range are 
shown as circles. Although there is some overlap, humans tend to have flatter cuboid 
facets on the 5th metatarsal, whereas chimpanzees and gorillas have more convex facets. 
The KNM-ER 803, OH 8, StW 114/115, and A.L. 333-13 5th metatarsals have flat 
human-like proximal facets, whereas the A.L. 333-78 A. afarensis metatarsal falls 
between the human and ape distributions.  
  

The 4th metatarsal facet of the cuboid is slightly flatter in chimpanzees, 11.0% ± 

4.5% than in gorillas, 14.0% ± 3.2% (p=0.02) (Figure 7.11). Humans have articular 

surfaces that are 4.5% ± 5.4%, statistically flatter than African ape cuboid 4th metatarsal 

facets (p< 0.01).  
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Figure 7.11. Shape of the 4th metatarsal facet on the cuboid. 
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Figure 7.11. The y-axis is the ratio of the height or depth of the cuboid facet relative to its 
dorsoplantar width. A positive value is convex, a negative is concave. Boxplots show the 
median (black bar), interquartile ranges (blue/gray), and overall ranges of the data. 
Outliers defined as greater than 1.5 times the interquartile range are shown as circles. 
Although there is some overlap, humans tend to have flatter 4th metatarsal facets on the 
cuboid, whereas chimpanzees and gorillas have more concave facets. The OH 8 cuboid 
has a flat human-like facet for the 4th metatarsal.  
 

The 5th metatarsal facet of the cuboid is slightly flatter in chimpanzees than in 

gorillas, (p=0.02); however, each of the African apes is statistically identical to humans 

for this measure (Gorilla, p=0.55; Pan, p=0.06) (Figure 7.12).  
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Figure 7.12. Shape of the 5th metatarsal facet on the cuboid. 
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Figure 7.12. The y-axis is the ratio of the height or depth of the cuboid facet relative to its 
dorsoplantar width. A positive value is convex, a negative is concave. Boxplots show the 
median (black bar), interquartile ranges (blue/gray), and overall ranges of the data. 
Outliers defined as greater than 1.5 times the interquartile range are shown as circles. 
Human and African ape cuboids cannot be differentiated based on the shape of the facet 
for the 5th metatarsal.  
 

Fossils 

 The cuboid and lateral metatarsals of Proconsul nyanzae (KNM-RU 5872) 

(Figure 7.13) and the lateral metatarsals of the Nacholapithecus kerioi (KNM-BG 35250) 

(Figure 7.14) hominoid skeletons preserved evidence of a midtarsal break.  

The cuboid of P. nyanzae is 24.9 mm proximodistally and 18.1 mm 

mediolaterally. The facet for the 5th metatarsal is slightly concave and 8.2 mm 

dorsoplantarly whereas and 4th metatarsal facet is strongly concave. This facet extends  
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Figure 7.13. Lateral aspect of Proconsul nyanzae (KNM-RU 5872) midfoot. 

 
Figure 7.13. Articulated cuboid, and 5th and 4th metatarsals from the Proconsul nyanzae 
foot KNM-RU 5872 in dorsal view. Notice the extension of the articular surface onto the 
dorsal surface of both metatarsals and the cuboid indicative of midfoot flexion in this 
Miocene ape.  
 

superiorly onto the dorsal surface of the cuboid. The 5th metatarsal, which preserves 66.6 

mm of its entire length, also has an expansion of the cuboid articular facet onto the dorsal 

surface. The cuboid facet is 7.9 mm and convex in the dorsoplantar direction and 6.6 mm 

and flat mediolaterally. The fourth metatarsal of P. nyanzae preserves 65.1 mm of its  
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Figure 7.14. Lateral metatarsals of Nacholapithecus kerioi (KNM-BG 35250). 

 
Figure 7.14. Articulated 5th and 4th metatarsals from the Nacholapithecus kerioi skeleton 
KNM-BG 35250 in dorsal view. Notice the extension of the articular surface for the 
cuboid onto the dorsal surface of the 5th metatarsal and the markedly convex shape of the 
cuboid facet of the 4th metatarsal.  
 

length. The cuboid facet is strongly convex and is 12.8 mm dorsoplantarly and 7.8 mm 

mediolaterally.  

The 5th metatarsal of Nacholapithecus preserves 61.3 mm of its total length. The 

cuboid facet is 7.8 mm dorsoplantarly and is convex (21.1% of total height), extending 

onto the superior surface of the bone. The fourth metatarsal is very convex in a 

dorsoplantar direction (21.7% of total height), though this bone has been distorted during 

fossilization and is artificially compressed mediolaterally.  

The hominin cuboid-metatarsal region is poorly represented in the fossil record 

(Table 7.2). Only the OH 8 cuboid, and an undescribed potential P. robustus cuboid from 

Kromdraai (Thackeray et al., 2001) are known from the Plio-Pleistocene. Only nine  
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Table 7.2. Fossil hominin cuboids, 4th metatarsals and 5th metatarsals.  
Element Accession 

number 
Geological 
age 

Taxon Studied for 
this paper 

Cuboid OH 8 1.8 mya Homo habilis? 
Paranthropus boisei? 

Yes 

 KB 3133 1.7-2.0 Paranthropus robustus? No (in 
Thackeray, 
2003) 

Fourth 
Metatarsal 

A.L. 333-
160 

3.2 mya Australopithecus afarensis No 
(unpublished) 

 StW 485 2.6-2.8 
mya 

Australopithecus africanus? Yes 

 StW 596 2.6-2.8 
mya 

Australopithecus africanus? No (in 
Deloison, 
2003) 

 OH 8 1.8 mya Homo habilis? 
Paranthropus boisei? 

Yes 

 D4165 1.77 mya Homo sp. No (in 
Lordkipanidze 
et al., 2007) 

 D2669 1.77 mya Homo sp. No (in 
Lordkipanidze 
et al., 2007) 

Fifth 
metatarsal 

A.L. 333-
13 

3.2 mya Australopithecus afarensis Yes (cast) 

 A.L. 333-
78 

3.2 mya Australopithecus afarensis Yes (cast) 

 StW 
114/115 

2.4-2.8 
mya? 
1.5-2.0 
mya? 

A. africanus? 
 
Homo sp.? 
Paranthropus sp.? 

Yes 

 OH 8 1.8 mya Homo habilis? 
Paranthropus boisei? 

Yes 

 D4508 1.77 mya Homo sp. No (in 
Lordkipanidze 
et al., 2007) 

 KNM-ER 
803f 

1.53 mya Homo erectus Yes 

 

lateral metatarsals were known until the recently described postcranial remains from 

Dmanisi increased that number to twelve (Lordkipanidze et al., 2007).  
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A.L 333-78 and A.L. 333-13 are left fifth metatarsals from Australopithecus 

afarensis dated to approximately 3.2 million years old (Walter, 1994). These bones have 

been previously described by Latimer et al. (1982). The cuboid facet of A.L. 333-78 is 

10.8 mm and slightly convex in the dorsoplantar direction, and 10.2 mm and flat 

mediolaterally. This facet in A.L. 333-13 is a slightly larger 12.0 mm and flat in the 

dorsoplantar direction, and 10.7 mm and slightly concave mediolaterally. The articular 

surface for the cuboid angles proximomedially to distolaterally and is continuous with the 

articulation for the 4th metatarsal in both fossils. There is no evidence for extension of the 

cuboid articular surface onto the dorsal aspect of either bone, like the condition found in 

most human fifth metatarsals (74%) and fewer ape 5th metatarsals (24%). The slightly 

convex shape to the cuboid facet measured to be 7.4% the height of the facet 

dorsoplantarly falls in between the ranges observed for humans and African apes (Figure 

7.10). A.L. 333-13 is almost identical to the modern human mean for this measure, 

having a dorsoplantar convexity 3.8% of the height of the cuboid facet (Figure 7.10).  

 Sterkfontein, South Africa has yielded two 4th metatarsals (StW 485 and StW 

596) from Member 4. Only StW 485 was measured for this study, though Deloison 

(2003) has described these two bones as having very similar morphology. These 

Australopithecus africanus specimens are dated to approximately 2.6-2.8 mya (Kuman 

and Clarke, 2000) though Berger et al. (2002) have suggested a later date of 1.5-2.5 mya 

for the Member 4 hominins.  Additionally, a single 5th metatarsal (StW 114/115) has been 

recovered from the southerly located W/45 grid of Member 4, which may have been 

deposited more recently than the more northerly Member 4 sediments, but still is 

regarded by most as A. africanus (Kuman and Clarke, 2000). 
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Figure 7.15. Lateral view of South African hominin 4th metatarsal (StW 485) compared to 
chimpanzee (left) and human (right).  

 
Figure 7.15. The shape of the cuboid articular surface of the 4th metatarsal is convex in 
African apes (chimpanzee on left) and flat in modern humans (right). Note also that the 
curvature of the chimpanzee 4th metatarsal base extends dorsally (to the left in the image) 
indicating that the convex surface enhances dorsiflexion at the cuboid-4th metatarsal joint.  
South African hominin StW 485 has a human-like flat articular surface, suggestive of a 
stable midfoot. These metatarsals are all in lateral view. 
 

StW 485 is a right fourth metatarsal, broken 26.8 mm from the base (Figure 7.15). 

The articulation with the cuboid is slightly concave mediolaterally and dorsoplantarly it is 

very slightly concave with a depth 0.7% of the total dorsoplanar height of the facet. The 

flat dorsoplantar cuboid facet on the proximal end of this bone is quite unlike the convex 

surface of the cuboid facet in apes (Figure 7.9). The dimensions of this articulation are 

14.3 mm (PD) and 9.3 mm (ML). There is no evidence that the articular surface for the 

cuboid extends superiorly whatsoever. Deloison (2003) describes the cuboid facet of StW 

596 as “sinueuse”, with a convex central part and a concave plantar aspect. Images of this 

fossil from Deloison (2003) are clear that while there is undulation to the cuboid facet, 

overall it is flat like modern humans, and dissimilar to the convex condition of apes and 

monkeys.  
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StW114/115 is the earliest complete hominin 5th metatarsal. It is 60.7 mm from 

the tip of the lateral tuberosity to the most distal point on the metatarsal head. The 

articular surface for the cuboid angles only slightly proximomedially to distolaterally and 

is continuous with the articulation for the 4th metatarsal. The cuboid articulation is 

mediolaterally convex and dorsoplantarly only slightly convex, 3.7% of the dorsoplantar 

height of the facet. This is almost identical to the human mean for this measure (3.9% ± 

4.6%) (Figure 7.10). This articulation measures 12.9 mm mediolaterally, 10.6 mm 

dorsoplantarly on the lateral aspect of the cuboid articulation, and 8.1 mm dorsoplantarly 

on the medial aspect. The superior aspect of the base of the metatarsal is roughened and 

has no evidence for a superior expansion of the tarsometatarsal joint surface.  

 KNM-ER 803 is a partial skeleton of the genus Homo (Day and Leakey, 1974) 

from the 1.53 mya Okote Member on the east side of Lake Turkana (Feibel et al., 1989). 

The left 5th metatarsal (KNM-ER 803f) preserves only the most proximal 32.4 mm, 

including the base, which angles strongly from proximomedially to distolaterally. The 

articulation for the cuboid is flat mediolaterally. Dorsoplantarly the facet is slightly 

convex, with a height only 1.1% of the dorsoplantar length, in the low part of the human 

range (Figure 7.10). It measures 15.2 mm mediolaterally, 12.1 mm dorsoplantarly on the 

lateral side and tapers to 8.1 mm dorsoplantarly on the medial aspect of the cuboid 

articulation. There is no continuation of the cuboid facet to the superior aspect of the base 

of the 5th metatarsal.   

 The OH 8 foot preserves the cuboid, 4th, and 5th metatarsals from the same 

individual (Figure 7.14). This 1.8 million year old specimen is considered by many to be  
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Figure 7.16. Lateral aspect of the OH 8 foot. 

 
Figure 7.16. Articulated cuboid, and 5th and 4th metatarsals from the OH 8 foot in dorsal 
view. Notice the absence of any extension of the articular surfaces onto the dorsum of the 
cuboid or 5th metatarsal. Also note the pathological growths along medial aspect of both 
the 5th and 4th metatarsals and the reduced 5th metatarsal tuberosity.   
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Homo habilis (Leakey et al., 1964; Susman and Stern, 1982) and by others (Wood, 1974; 

Grausz et al., 1988; Gebo and Schwartz, 2006) to be from Paranthropus boisei.  

The cuboid is quite small, measuring 28.0 mm proximodistally, 20.4 mm 

mediolaterally, and 18.7 mm dorsoplantarly. Dorsoplantarly, the facet for the 5th 

metatarsal is slightly concave, 3.5% of its total height, and mediolaterally slightly 

concave, though this measure does not discriminate modern humans and African apes 

(Figure 7.12). The 5th metatarsal facet measures 9.3 mm mediolaterally, 10.7 mm 

dorsoplantarly on the medial aspect and tapers to 9.3 mm laterally. The facet for the 4th 

metatarsal is slightly concave dorsoplantarly (6.2% of total height) and mediolaterally 

flat. It is quite distinct from the African ape condition for this measure (Figure 7.11). The 

4th metatarsal facet measures 13.2 mm dorsoplantarly and 9.1 mm mediolaterally. These 

articular facets end abruptly at the junction of the dorsal surface of the cuboid. 

The 5th metatarsal preserves a proximal section 48.3 mm in length but is broken 

prior to the metatarsal head. The lateral aspect of the bone is poorly developed and may 

be the result of an unfused lateral tuberosity, consistent with the specimen’s hypothesized 

juvenile status (Stern and Susman, 1982). Alternatively, the absence of the styloid of the 

5th metatarsal may be pathological and the result of arthritis (Day and Napier, 1964). A 

pathological ridge of bone on the medial aspect of the metatarsal is quite salient and 

projects plantarmedially to a corresponding “facet” of osteophytic bone growth on the 

lateral aspect of the 4th metatarsal. The articulation with the cuboid is slightly convex 

dorsoplantarly (5.5% of total height) and convex mediolaterally. It measures 9.4 mm 

dorsoplantarly and 7.7 mm mediolaterally.  
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The 4th metatarsal preserves the most proximal 40.6 mm. The articular facet for 

the cuboid is slightly convex dorsoplantarly (6.6% of total height) and mediolaterally. 

The slight convexity of the cuboid facets of the 4th and 5th metatarsals is strikingly 

human-like and distinct from the African ape condition (Figures 7.9 and 7.10). The 5th 

metatarsal base measures 15.4 mm dorsoplantarly and 9.3 mm mediolaterally. There is no 

superior extension of the cuboid articular facet on either the 4th or the 5th metatarsals.  

 

Discussion 

It is clear that a single line of evidence would not be sufficient to convincingly 

demonstrate that the midtarsal break occurs primarily at the tarsometatarsal joint rather 

than the transverse tarsal joint. However, results obtained from x-rays, dissections, video 

data from live chimpanzees and gorillas, EMG results from chimpanzees, and skeletal 

comparisons all point to the same conclusion. It can thus be reasonably argued that 

D’Août et al. (2002) and Vereecke et al. (2003) were correct in suggesting that the 

primary location of the midtarsal break is the cuboid-metatarsal joint. Although it was 

found that the calcaneocuboid joint does contribute approximately one-third of the total 

midtarsal flexion in macaques, baboons, mandrills, chimpanzees, and gorillas, the 

majority of this motion happens more distally at the tarsometatarsal joint. It is 

recommended here that this motion be referred to as the “midfoot” break rather than the 

“midtarsal” break. Additional work using cineradiography could continue to test this 

hypothesis, and more precisely resolve the relative contributions of the calcaneocuboid 

and cuboidmetatarsal joints to the midfoot break. 
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X-rays of baboon feet in lateral view demonstrate that relative to a neutral 

position, the cuboid shifted superiorly on the fifth metatarsal during midfoot flexion. 

Although there is movement at the calcaneocuboid joint that would also contribute to 

midfoot flexion, the majority occurs at the tarsometatarsal joint. A similar result is 

obtained on the one gorilla foot x-rayed, with a plantarflexed neutral position between the 

cuboid and metatarsals becoming more aligned with midfoot flexion. Unfortunately, the 

X-ray protocol which involves human manipulation of the primate feet was not able to 

generate the enormouns force on the gorilla foot that the adult male would have been 

capable of during normal quadrupedal walking, and thus the midfoot flexion was 

minimal.  

The X-rays were consistent with the results obtained from the dissections, and 

video data of live primates. Although some flexion was generated at the calcaneocuboid 

joint during initial heel lift (about 10 degrees), the majority (another 20 degrees) occurred 

more distally at the tarsometatarsal joint. These data are consistent with stills from 

terrestrially walking baboons (Muybridge, 1957) in which heel elevation is followed by 

more distally located flexion before toe-off.  

Perhaps the most compelling evidence for the anatomical location of the midfoot 

break comes from video data of walking apes and mandrills with the tuberosity of their 

5th metatarsal marked. Initial heel lift in chimpanzees, gorillas, mandrills, and macaques 

slightly flexes the midfoot in a region proximal to the tuberosity of the 5th metatarsal, 

almost certainly the calcaneocuboid joint. However, flexion then shifts to a position 

located distally to the tuberosity of the 5th metatarsal, consistent with flexion at the 

tarsometatarsal joint. Furthermore, the magnitude of foot flexion is greater at the 
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tarsometataral joint than at the calcaneocuboid joint. These data are consistent with EMG 

results that indicate simultaneous activity of the gastrocnemius/soleus and the posterior 

tibialis during the midfoot break in terrestrially walking chimpanzees. The broad 

insertion of the posterior tibialis tendons across the navicular, cuboid, and three 

cuneiforms would restrict transverse tarsal flexion during activity of this muscle. Instead, 

given these data, it is more likely that the majority of midfoot flexion occurs at the 

tarsometatarsal region.  

In humans, the midfoot break is prevented by components of the longitudinal arch 

of the foot: the plantar ligaments (short plantar ligament, long plantar ligament, 

calcaneonavicular ligament) and the plantar aponeurosis. Kidd (1993) has also suggested 

that the midfoot break is possible only because of an absence of an arch in non-human 

primates. Apes and monkeys have a strong short plantar ligament between the calcaneus 

and cuboid, providing additional soft tissue evidence that the majority of midfoot flexion 

does not occur at this joint. However, the absence of the other components of a 

longitudinal arch, such as the long plantar ligament and the calcaneonavicular ligament, 

give non-human primates a flat-foot with increased mobility at the tarsometatarsal region.   

 

Role of the calcaneocuboid joint in the midfoot break 

 Elftman and Manter (1935) were the first to recognize the important and 

considerable differences in the calcaneocuboid joint between humans and non-human 

primates. Many studies of the primate midfoot have followed (Bojsen-Møller, 1979; 

Lewis, 1980; Langdon et al., 1991; Kidd et al., 1996; Kidd, 1998; Hartcourt-Smith, 2002) 

and it is now widely accepted that a variety of ligamentous and osteological changes in 
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the human calcaneocuboid joint render the human midfoot more stable than that of non-

human primates. This study does not question that non-human primates have a more 

mobile transverse tarsal joint than humans and are capable of greater ranges of supination 

and pronation. Instead, it was tested whether the calcaneocuboid joint was the anatomical 

site of the approximately 30˚ of flexion necessary to account for the midtarsal break. 

 Plio-Pleistocene hominin foot fossils have been examined to assess whether 

australopiths and other early human ancestors had more mobile midfeet, or had already 

evolved a stable lever during push-off phase of walking (Lewis, 1980; Stern and Susman, 

1982; Susman, 1983; Gomberg and Latimer, 1984; White and Suwa, 1987; Langdon et 

al., 1991; Kidd et al., 1996; Kidd, 1998). These studies looked primarily at the 

calcaneocuboid joint to make this determination. This is a critical area for determining 

whether the midtarsal joint locking mechanism is in place even if most of the midfoot 

flexion is not actually occurring in this region. During the push-off phase of human 

walking, the hindfoot inverts, the cuboid and calcaneus lock together, and the 

longitudinal arch lowers and tenses. These events all significantly reduce the mobility of 

the midfoot and transform the foot into a rigid lever well adapted for efficient push-off 

(Sarrafian et al., 1987). Although in humans flexion of about ten degrees can occur 

between the cuboid and metatarsals (Ouzounian et al., 1989), this flexion is significantly 

reduced when the calcaneus is inverted during the pushoff phase of walking (Blackwood 

et al., 2006). Thus, the locking of the calcaneocuboid joint, and perhaps more critically 

the presence of a binding longitudinal arch that tenses during hindfoot inversion, prevent 

a midfoot break in humans. Interestingly though, Blackwood et al. (2006) did not find 

that flexion between the calcaneus and cuboid was more prominent during hindfoot 
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eversion than when the hindfoot is inverted. This insight further supports the hypothesis 

that although the locking between the calcaneus and the cuboid helps stabilize the 

midfoot and prevent the midfoot break, it is not the primary anatomical source of it.  

 

Evolution of the stable midfoot. 

 It is quite useful for paleoanthropologists to locate skeletal correlates for 

particular joint motions to assess the timing of and circumstances behind locomotor 

evolution in the fossil record. Because the locking of the calcaneocuboid joint is a critical 

component of midfoot stability, this region has featured prominently in discussions of 

human locomotor evolution. This study reveals that there is another joint, and potentially 

three more joint surfaces that can be studied to assess how stable the midfoot is in extinct 

hominins: the distal cuboid, and proximal articular surfaces of the fourth and fifth 

metatarsals. These data are useful because of both the scant fossil record, and the 

conflicting interpretations of the available fossil evidence.  

 A study of the cuboid, fifth and fourth metatarsal joint surfaces suggest that these 

joint surfaces in humans and African apes are statistically distinguishable. African apes 

studied here have dorsal expansion of the cuboid and 5th metatarsal joint surfaces, 

although this condition can also occur in human feet and is perhaps in part the result of 

humans occasionally having midfoot flexion (Vereecke et al., 2003). It will be important 

to test whether midfoot flexion in humans is correlated with the occurrence of flat-

footedness in humans. The 4th and 5th metatarsal bases of chimpanzees and gorillas are 

statistically more convex than these articular facets on modern human metatarsals. The 

difference between the human and ape cuboid-metatarsal joint can be found in the 
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cuboid-4th metatarsal joint shape. The 4th metatarsal facet on the cuboid of humans is 

significantly flatter than the more concave facet in African apes. The convex morphology 

of the 4th and 5th metatarsal bases and corresponding concave facet on the cuboid in 

African apes is argued to be related to midfoot flexion, and not to general grasping 

abilities, for two reasons. One, the convexity of the cuboid facet on the 4th metatarsal 

extends dorsally, consistent with increased dorsiflexion rather than plantarflexion at the 

tarsometatarsal joint. Two, the metatarsal-cuneiform facets of apes are flat. If these joint 

surfaces were convex and concave respectively, it could be argued that the cuboid-4th 

metatarsal joint morphology was like the rest of the distal ape midfoot in being adapted 

for grasping plantarflexion. Furthermore, these features indicative of midfoot flexion are 

preserved in the fossil record as demonstrated by the cuboid and lateral metatarsals of the 

Miocene hominoids Proconsul nyanzae and Nacholapithecus kerioi.  

 

Australopithecus afarensis 

 There is not yet any pedal evidence for hominins earlier than 3.5 million years 

that could address midfoot stability and the possible presence of the longitudinal arch. 

Studies on the oldest hominin feet, attributed to A. afarensis, have produced mixed 

results. Calceneocuboid joint morphology in A. afarensis has been assessed based on a 

fragmentary cuboid that has not been formally described. Preliminarily, though, it has 

been suggested that the calcaneocuboid joint may allow more mobility than that found in 

modern humans (Gomberg and Latimer, 1984; White and Suwa, 1987). This is consistent 

with studies that have suggested that A. afarensis did not have a longitudinal arch. This 

conclusion has been based on the dorsal inclination of facets of the foot (Sarmiento, 
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1991; Berillon, 2003), and evidence for weight bearing on the navicular (Harcourt-Smith, 

2002; Harcourt Smith and Aiello, 2004).  

 However, others have suggested that A. afarensis may have had an arch. There is 

a distinct impression on the talar heads of both A.L. 288-1, and A.L. 333-75 for the 

calcaneonavicular ligament (Lamy, 1986). Furthermore, the inferior navicular bones of A. 

afarensis (A.L. 333-36 and A.L. 333-47) have broad insertion areas for the cubonavicular 

ligament, also important in stabilizing the arch (Stern and Susman, 1983; Lamy, 1986; 

Gebo, 1992). Finally, the Laetoli footprints demonstrate that at 3.5 million years ago, a 

hominin species had evolved a longitudinal arch (White, 1980; White and Suwa, 1987). 

Unless A. afarensis did not make the Laetoli footprints as argued by some (Tuttle et al., 

1990; Harcourt-Smith, 2004), these footprints are strong evidence that A. afarensis had 

an arched foot.  

 The 5th metatarsals A.L. 333-13 and A.L. 333-78 do not conclusively indicate 

whether A. afarensis had midfoot flexion and was absent of a longitudinal arch, or had 

midfoot stability and thus had a longitudinal arch (Figure 7.17). However, the fossils are 

consistent with the latter scenario. The cuboid surface of A.L. 333-78 is more convex 

than most modern human 5th metatarsals, though within a standard deviation of the 

human mean for this measure. Likewise, the cuboid surface of this fossil is flatter than 

most African ape 5th metatarsals, though also within a standard deviation of the ape mean 

for this measure. The A.L. 333-13 fossil is almost identical to the human mean for this 

measure, though ape 5th metatarsals can be found with this morphology. There is no 

indication that the cuboid ever moved superiorly onto the dorsum of the 5th metatarsal in 

either of these individuals. Because the fourth metatarsal may be a better skeletal  
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Figure 7.17. Fossil hominin 5th metatarsals.  

 
Figure 7.17. Fossil hominin 5th metatarsals in dorsal view. From left to right: A.L. 333-13 
(cast), A.L. 333-78 (cast), and original fossils of OH 8, StW 114/115, and KNM-ER 803. 
Scale bar is 10 mm. The fossils have been inverted to all represent the left side. 
 

indicator of midfoot flexion, the morphology of the currently unpublished A. afarensis 

fourth metatarsal A.L. 333-160 from Hadar (Kimbel et al., 2004) will be critical for 

assessing midfoot stability in this species.  

 

Sterkfontein. cf. Australopithecus africanus 

 Based on the non-weight bearing navicular of “Little Foot” StW 573, it has been 

suggested that A. africanus had at least a minimal longitudinal arch (Harcourt-Smith, 

2002). If the three metatarsals from Member 4 represent the same taxon, the results of 

this study agree. The cuboid facet on the 4th metatarsals StW 485 and StW 596 are both 

flat, like modern human and distinctly unlike the convex facet of non-human primates  
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Figure 7.18. Fossil hominin 4th metatarsals. 

 
Figure 7.18. Fossil hominin 4th metatarsals in dorsal view. StW 485 (left) and OH 8 
(right). Scale bar is 10 mm.  
 

with midfoot flexion (Figure 7.9; Figure 7.18). Additionally, the fifth metatarsal from 

Member 4 in Sterkfontein StW 114/115 is human-like in lacking dorsal expansion of the  

cuboid articular surface, and the curvature of the cuboid facet is almost identical to the 

modern human mean (Figure 7.17). These data suggest limited midfoot flexion, and may 

constitute evidence for the presence of a longitudinal arch in A. africanus. 
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East and South African hominins circa 2.4-1.5 mya 

 It is difficult to assign postcranial specimens to particular hominin taxa unless 

they are associated with craniodental remains. Thus the following discussion pertains to 

fossils that could be early members of the genus Homo, or from the robust 

australopithecine genus Paranthropus. Regardless of taxa, the evidence is strong that 

known hominins from this time period had a longitudinal arch, and limited flexion at the 

midfoot.  

 Stability at the calcaneocuboid joint is human-like for the 2.36 million year old 

calcaneus from Omo (33-74-896) (Langdon et al., 1991; Gebo and Schwartz, 2006), and 

thus this hominin may have had a longitudinal arch (Gebo and Schwartz, 2006). 

Interpretations of the OH 8 foot have been more contentious. Multiple studies agree that 

the morphology of the calcaneocuboid joint in the OH 8 foot would produce a stable 

lever during push-off (Lewis, 1980; Stern and Susman, 1982; Susman, 1983; Langton et 

al., 1991; Kidd et al., 1996; Kidd, 1998). Additionally, many have argued that the 

morphology of the OH 8 foot preserves evidence for a longitudinal arch by 1.8 million 

year ago (Napier, 1965; Susman, 1983; Lamy, 1986; Berillon, 2003). However, others 

(Oxnard and Lisowski, 1980; Kidd et al., 1996; Kidd, 1998) have argued that the OH 8 

foot has a divergent first ray, and a divergent hallux and longitudinal arch cannot coexist 

in the same foot (Lisowski, 1967). The argument for an abducted hallux in the OH 8 foot 

is based on a high neck angle in the talus which would shift the whole medial column of 

the foot, the navicular, medial cuneiform and first metatarsal, in a position of abduction 

relative to the rest of the foot (Kidd et al., 1996; Kidd, 1998). But, others have argued that 

the talus is three joint surfaces away from the first metatarsal and thus may not be the 
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best skeletal indicator of a divergent big toe (Lovejoy, 1975; Harcourt-Smith, 2002). 

Furthermore, because the neck angle is statistically identical in humans, macaques, 

baboons, and orangutans (Barnett, 1955), there is no relationship between this measure 

and a divergent great toe.  Instead, the high neck angle of the talus may indicate the 

presence of a particularly high arch, rather than an absent arch, as this would reduce 

bending forces on the medial aspect of the foot (Preuschoft, 1971).  

 The morphology of the cuboid, fourth and fifth metatarsals in the OH 8 foot are 

strongly suggestive of midfoot stability in this hominin species. The shape of the joint 

facets, and the absence of any dorsal expansion of the articular surface on the cuboid or 

fifth metatarsal are evidence that the OH 8 individual did not experience midfoot flexion, 

and thus probably had the structural components of a longitudinal arch. The articular 

facets on the cuboid, 4th metatarsal and 5th metatarsal are distinctly human-like in having 

a flat joint shape (Figures 7.9, 7.10, 7.16, 7.17, 7.18, 7.19).  

The fifth metatarsal from the Koobi Fora assigned to Homo KNM-ER 803 is 

indistinguishable from modern humans and provides further evidence for midfoot 

stability in Early Pleistocene hominins (Figure 7.17). Finally, two fourth metatarsals and 

a fifth metatarsal from the 1.77 million year old site of Dmanisi have been recently 

published (Lordkipanidze et al., 2007). Although the joint morphology of these 

specimens is not described in detail, a human-like, flat facet for the cuboid can be seen 

from the images of these bones suggesting midfoot stability and the likelihood for the 

presence of a longitudinal arch in the Dmanisi hominins (Lordkipanidze et al., 2007).  
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Figure 7.19. 3-D model of 4th metatarsal of the OH 8 foot compared to chimpanzee and 
human. 

 
Figure 7.19. 3D models obtained by scanning the 4th metatarsals of a chimpanzee (left), 
human (right) and the OH 8 foot (middle) using a portable NextEngine laser scanner 
from. Each bone is oriented with the distal metatarsal head to the lower left and the 
proximal metatarsal base to the upper right. Notice the convex base to the ape metatarsal, 
and the flattened proximal base on the human and OH 8 metatarsals.  
  

The midfoot break, longitudinal arch and climbing adaptations in the midfoot. 

 The climbing abilities of early hominins must be considered in the context of 

them as terrestrial bipeds. For example, climbing in modern apes is strongly facilitated by 

a divergent big toe. A divergent hallux has been suggested for an early South African 

australopithecine (Clarke and Tobias, 1995), for Australopithecus afarensis (Harcourt-

Smith, 2002; Harcourt-Smith and Aiello, 2004) and for the OH 8 foot (Kidd et al., 1996; 

Kidd, 1998). However, a reanalysis of these specimens has recently suggested that a 

divergent toe was probably not present in any of these hominin species (McHenry and 

Jones, 2006). If early hominins had already evolved an adducted hallux, and they were 

climbing often, they would have to have evolved even more obvious and exaggerated 

musculoskeletal features related to climbing in other regions of the body (i.e. stronger 

arms and hands relative to body size than modern apes) to compensate for the absence of 

a divergent toe (Coffing, 1998; Ward, 2002). Additional adaptations for bipedalism in the 

foot that restrict arboreality would further place a selection pressure on the arm, hip, and 

knee. A debate has raged for 25 years now whether the adaptations for bipedality 
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preclude climbing in early hominins (Latimer et al., 1987; Latimer, 1991), or whether 

some of the primitive skeletal features of early hominins are evidence that these animals 

were both bipedal and arboreal (Susman et al., 1984). The data presented in this paper 

provide yet more fodder for this discussion. 

 During the early stance phase of bipedal walking, the foot is pronated, i.e. the 

calcaneus is everted (Sammarco, 1989; Donatelli, 1990). This position of hindfoot 

eversion raises the longitudinal arch, relaxes the aponeurosis and long plantar ligament, 

and allows for some midfoot mobility (Hicks, 1953; Inman, 1976; Sarrafian et al., 1987). 

However, during the later stance phase of walking, the tibia swings over the foot at the 

talocrural joint and internally rotates. The calcaneus inverts and locks at the 

calcaneocuboid joint, and this position of the hindfoot lowers the longitudinal arch, 

tensing the aponeurosis and long plantar ligament (Hicks, 1953; Inman, 1976; Sarrafian 

et al., 1987; Donatelli, 1990). This tension remains as the foot lifts off the ground at the 

heel and the toes extend at the metatarsophalangeal joint (Sarrafian et al., 1987). Tension 

in the longitudinal arch provides a rigid lever arm through the late stance phase and push-

off phase of walking.  

 What is critical for the relationship between midfoot flexibility and climbing is 

the recognition that dorsiflexion at the talocrural joint, and the corresponding foot 

abduction, both lower the longitudinal arch and place this structure under maximum 

tension. During vertical climbing, chimpanzees place their foot in a position of abduction 

against the tree, and engage in extreme dorsiflexion at the talocrural joint (Chapter 2; 

Figure 7.3). They are in this position during push-off of the opposite foot and hand, 

meaning that they are supporting much of their body weight on a single grasping foot and 
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ipsilateral hand. If chimpanzees had a longitudinal arch, dorsiflexion and adduction 

would tense the arch, and limit midfoot mobility and grasping capacity precisely during 

the time when they would require it most. Based on this logic, it is difficult to imagine 

that once an early hominin had evolved a longitudinal arch, it could climb in the manner 

of a modern chimpanzee. It has been suggested that the grasping midfoot of climbing 

apes may have preadapted hominins for a longitudinal arch (Oxnard and Lisowski, 1980; 

Pickford, 2006). Although the presumed grasping midfoot of the hominin last common 

ancestor may have provided the structural raw material for the evolution of the 

longitudinal arch, it is suggested here that the evolution of one necessarily replaces the 

other.  

 However, Old World monkeys may provide another model for climbing in early 

hominins and this will be examined briefly. Preliminary kinematic data on climbing in 

Old World monkeys suggest that they may climb differently than modern apes (Hirasaki 

et al., 1993; Isler, 2005). Old World monkeys grasp the vertical substrate with their heel 

lifted and thus the midfoot break helps to reduce the climbing moment arm, rather than 

extreme dorsiflexion at the talocrural joint. This differs from climbing chimpanzees who 

engage in a midfoot break only during the push-off phase of climbing, in much the same 

way that they use this motion terrestrially. If early hominins were climbing more like 

cercopithecoids rather than apes, they would require a midfoot break to ascend a vertical 

substrate. Once again, the presence of a longitudinal arch would be the limiting factor. As 

demonstrated above, the structural components of the longitudinal arch prohibit midfoot 

flexion, and thus once the arch evolves, early hominins would not have been able to 

climb in the manner of either a modern ape, or a modern cercopithecoid.  
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These data suggest that the evolution of the arch and the resulting stability of the 

midfoot would preclude any kind of arboreal climbing in hominins that resembles that of 

any extant anthropoid. If hominins with a longitudinal arch did climb, they would have to 

do so in a manner kinematically different from modern apes or cercopithecoids. Thus, if 

hominins climbed, the splayed leg strategy of climbing practiced by some modern 

humans may have roots in the Plio-Pleistocene, or early hominins may have climbed in a 

manner without any modern analogues. Climbing with the legs splayed laterally would 

impose shearing forces on both the ankle and the knee of the hominin. If this mode of 

locomotion was practiced frequently by hominins, adaptations in the knee and the ankle 

may evolve to counteract these forces. Predictions from this biomechanical model should 

be tested with skeletal remains of populations known to climb trees in this manner and 

compared to the lower limb fossils of hominins.   

Based on the results of this study and the results from other studies examining 

midfoot stability and the longitudinal arch, it is doubtful that any known Plio-Pleistocene 

hominin had a foot capable of vertical ascent in an ape-like manner. If the Plio-

Pleistocene hominins represented by StW 485, StW 114/115, OH 8, and ER 803 did 

climb, they may have used a kinematically different strategy than apes employ today. 

Given the current pedal evidence, it is suggested that A. afarensis also had a foot poorly 

adapted for ape-like vertical climbing. These data are consistent with evidence from the 

ankle (Latimer et al., 1987; Chapter 4) and metatarsophalangeal joint (Latimer and 

Lovejoy, 1990) that suggest that A. afarensis had evolved lower limb morphology 

maladapted for climbing. Additional fossil evidence should shed light on this question.   
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Conclusions 

 Although the morphology of the calcaneocuboid joint may facilitate midtarsal 

mobility, the anatomical site for the midtarsal break is primarily at the tarsometatarsal 

joint. Midfoot flexion in humans is inhibited by the presence of the longitudinal arch. In 

addition to the calcaneus and the proximal cuboid, the distal facets of the cuboid and the 

articular surface of the proximal fourth and fifth metatarsals can provide evidence for 

midfoot stability in hominins. Data from the midfoot fossils of A. afarensis are currently 

inconclusive though consistent with the hypothesis that this species had evolved a stable 

midfoot and longitudinal arch. By the Pleistocene, known hominins had almost certainly 

evolved a longitudinal arch and were devoid of any midfoot flexion. This would severely 

restrict their ability to vertically climb trees in a manner kinematically similar to modern 

chimpanzees.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 328

 
 
 
 
 

CHAPTER 8 
 
 

Conclusions and future research 
 
 

 This dissertation investigated whether the skeletal and ligamentous morphology 

of the primate ankle and midfoot was adapted for bouts of vertical climbing in hominoids 

and some atelines. I employed a multifaceted approach that addressed questions of ankle 

functional morphology using evidence from the following: 

• Kinematic data on wild and captive catarrhines. 

• Radiographs and dissections of primate lower limbs. 

• EMG data on muscle activity during climbing and terrestrial walking in 

chimpanzees. 

• Biomechanical assessment of the ankle ligaments of a baboon. 

• Linear and angular study of the distal tibia and talus in extant anthropoid 

primates. 

• Quantification of the surface topography of the anthropoid talocrural joint and 

cuboid-metatarsal joint using a 3D laser scanner. 

 

This dissertation provides the first kinematic data on vertical climbing in 

chimpanzees, and is the first to describe the kinematics of climbing in any completely 

wild hominoid species. In addition, this dissertation presents data for the first time on the 

biomechanics of the ligaments of the ankle in any non-human primate. Both of these 
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contributions have important ramifications for future studies of primate functional 

morphology. Using this multifaceted approach, it was found that in contrast to 

cercopithecoids, hominoids and atelines vertically climb often enough and in a 

kinematically distinct manner to result in specific skeletal morphologies of the talocrural 

joint. These include a mediolaterally wide anterior aspect of the distal tibia, a 

mediolaterally expanded metaphysis of the distal tibia and a mediolaterally thickened 

medial malleolus. These skeletal morphologies are functionally related to foot 

dorsiflexion and inversion and loading of the ankle in these joint positions. In addition, 

hominoids and ateline primates have a weakly developed intercollicular groove and may 

have a poorly developed posterior tibiotalar ligament. This ligament is an important 

dorsiflexion inhibitor in the ankle of modern humans and cercopithecoid monkeys.  

Application of these results to the early Miocene catarrhine fossil record suggest 

that the majority of purported hominoid species known from this time were above branch 

arboreal quadrupeds poorly adapted for bouts of modern hominoid and ateline-like 

vertical climbing. However, four tali from Rangwapithecus have a morphology consistent 

with the hypothesis that this species may have vertically climbed like modern atelines 

and Pongo. In addition, the distal tibia of Proconsul major has a modern ape-like 

morphology functionally correlated with loading of the talocrural joint in dorsiflexion 

and inversion- joint positions important during vertical climbing.  

In contrast, data on 30 hominin fossil tibiae and tali from the Plio-Pleistocene 

suggest that the known hominins lack adaptations for vertical climbing. In fact, it is 

argued that adaptations for bipedality result in a talocrural morphology maladapted for 

ape-like vertical climbing. Hominins distribute bone on the posterior and lateral aspect of 
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the talocrural joint, which necessarily reduces the relative amount of bone in the anterior 

and medial aspects of the joint, rendering the joint maladapted for positions of 

dorsiflexion and inversion. In addition, a varus ankle positions both the feet and knees 

directly under the center of gravity in hominins. This ankle morphology prevents the 

lower limb from obtaining positions of foot inversion critical for successful ascents of a 

vertical substrate. Only extreme dorsiflexion beyond what is observed in modern 

hominoids would compensate for this joint morphology, and strong attachments for the 

posterior tibiotalar ligament on the distal tibia of Plio-Pleistocene hominins demonstrate 

that this was not the case. Arguments that many Plio-Pleistocene tali possess an inverted 

set are unfounded. Instead, the unique talar morphology found in many Plio-Pleistocene 

tali may be a mechanism by which small hominins stabilized the ankle in the absence of 

an anterior talofibular ligament. Thus, the keeled talar surface and strong peroneal 

muscles that have been argued as evidence for arboreality can be explained as 

mechanisms of stabilizing the ankle in a fully bipedal hominin that had not yet evolved 

the anterior talofibular ligament. Furthermore, the morphology of the cuboid-metatarsal 

joint suggests that lateral midfoot stability, perhaps in the form of a longitudinal arch, 

was present in hominins by 3.2 million years ago. The presence of a longitudinal arch 

would restrict midfoot grasping and would severely restrict arboreal capacity in early 

hominins.  

In science, the answer to one question results in many more new questions. This 

study is no exception. What follows below is a list of potentially new research questions 

that have surfaced as a result of this dissertation organized by the Chapter that inspired 

them.  
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• Chapter 2: 

o Results from Chapter 2 suggest that kinematic data on locomotion in wild 

primates can complement data collected in more controlled captive 

settings. To address questions regarding vertical climbing in hominoids, 

additional observations of wild lowland gorillas and gibbons are sorely 

needed. Specifically, we require more data on how often they climb and 

climbing kinematics.  

o Kinematic analyses of hominoid and ateline vertical climbing can also be 

extended from the ankle to the more proximal lower limb joints of the 

knee, hip, elbow and shoulder. These results can be applied to provide 

more thorough tests of the hypothesis that vertical climbing was practiced 

by Miocene catarrhines and Plio-Pleistocene hominins.  

o Finally, the hypothesis supported in this dissertation, that vertical climbing 

in hominoids and atelines is kinematically different from vertical climbing 

in cercopithecoids, requires more systematic testing. Analyses of climbing 

bouts in the Old World monkeys and of joints other than just the ankle 

would furnish two means to do so.  

• Chapter 3: 

o Results from Chapter 3 tentatively suggest that there may be more 

locomotor diversity in the early Miocene than previously suggested. The 

tali from Songhor suggest that Rangwapithecus may include vertical 

climbing into its locomotor repertoire. Other potential Rangwapithecus 

postcrania should be reexamined. Because the similarly sized P. africanus 
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is also present at Songhor, it is not easy to assign postcrania to these two 

taxa, and as a consequence, it may be difficult to test this hypothesis.  

o In addition, the functional anatomy of Proconsul major should be 

reassessed. It is suggested here that P. major is not a size-scaled version of 

P. nyanzae or P. heseloni and may be better adapted for below branch 

suspensory behaviors, orthogrady, and vertical climbing than the other 

Proconsul species. A study of the postcrania of P. major may have 

important implications for Proconsul taxonomy and hominoid 

phylogenetics. 

o The role that body size may have in selecting for postcranial adaptations 

related to forelimb-dominated suspension, orthogrady, and vertical 

climbing needs to be studied in greater detail. It is likely that at a certain 

body mass, primates either must become fully terrestrial or evolve 

postcranial adaptations that better distribute the large mass of the primate 

across many arboreal substrates. Tests of these hypotheses may involve a 

study of the postcranial remains of the large bodied (~40-50 kg) 

Pleistocene cercopithecoids Rhinocolobus, Paracolobus, and 

Theropithecus. Preliminary examination of the Rhinocolobus remains 

suggest that this cercopithecoid had evolved hominoid-like adaptations in 

the ankle, shoulder, and elbow to better navigate its arboreal setting. This 

study would have important implications for assessing how much 

homoplasy can evolve in the primate postcranium, thereby informing 

phylogenetic hypotheses.  
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o It was not possible to study the distal tibia of Dryopithecus or the tali 

known from the later Miocene hominoid Oreopithecus. Applying the 

results of this dissertation to the ankle of these hominoids would provide 

valuable insights into the locomotion of later Miocene apes and test 

hypotheses of homoplasy in the hominoid postcranial skeleton.  

• Chapter 4: 

o Chapter 4 asked specifically whether the hominin talocrural joint was 

adapted for bouts of vertical climbing. It may also be important to ask the 

same question of the hominin knee and hip joint, and test whether 

hominins were climbing using kinematic data obtained at these more 

proximal lower limb joints in wild chimpanzees.  

o Based on the results from the ankle and work done by many other 

researchers, it is unlikely that the knee or hip would reveal that hominins 

were adapted for vertical climbing bouts. Given the morphology of the 

lower limb, the upper limb of a purported climbing hominin should 

therefore possess even more strongly exaggerated features related to 

arboreality than the similarly sized chimpanzee. The upper limb of early 

hominins should be reassessed based on a biomechanical model that shifts 

a majority of the propulsive and grasping responsibilities to the upper limb 

and hand. In addition, the question needs to be asked how vertical 

climbing and arboreality would produce strains on the upper limb bones 

that would be distinct from other upper limb activities such as carrying 

and throwing. 
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o The results of this study strongly suggest that if hominins were climbing, 

they were doing so in a manner kinematically distinct from both modern 

apes and modern cercopithecoids. There is another modern analogue to 

test: climbing humans. Variation of climbing in modern human 

populations such as the Ache, Efe, or Hadza should be assessed. A 

biomechanical model of pulse climbing by a bipedal hominin should be 

developed and predictions for how the ankle and knee should adapt to the 

shear forces that would be produced should be tested on a skeletal 

population known from the ethnographic record to engage in frequent 

bouts of climbing. If there is a skeletal signature of climbing, these data 

could be used to test whether australopithecines climbed in a manner 

similar to some modern human populations. 

o There are other, indirect ways to test for climbing in early hominins. As 

discussed in Chapter 4, I hypothesize that if hominins were frequently 

arboreal, then they would follow the pattern known from the skeletal 

remains of every other extant hominoid: they would frequently fall and 

break bones. In fact, one may expect even more broken bones from 

hominins as it is likely that they were more poorly adapted to an arboreal 

environment than modern apes. First, a comparative study of the 

pathology known from the modern human Libben collection, and studies 

of healed fractures in extant hominoids should be undertaken to test 

whether an arboreal signature can be obtained from the pattern of bone 
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pathology. A resampling approach could then be applied to the hominin 

fossil record. 

o Finally, there is an increasing tendency in the paleoanthropological 

literature to apply multivariate and geometric morphometric approaches to 

the hominin fossil record and to a posteriori assign more nonhuman ape-

like behavior to fossils that fall in the morphospace between humans and 

extant African apes. Instead, I suggest a priori predictions of what 

differences one might expect to see in morphology based on 

biomechanical models. These predictions can then be employed to 

interpret the results of geometric morphometric studies of hominin fossils.  

• Chapter 5: 

o This study assumes that the size and position of the posterior tibiotalar 

ligament affects the range of dorsiflexion. An orthopaedic study that uses 

x-ray or CT data to measure the size and position of the PTTL could be 

used to test the relative roles of the PTTL, the Achilles tendon, and the 

morphology of the talocrural joint itself on dorsiflexion in the human 

ankle.  

o This study also assumed that the type of mechanoreceptors in the PTTL 

were the same across primates. This may not be true. A histological study 

that examines the types and frequencies of mechanoreceptors in the PTTL 

of various primate species should be undertaken to test whether the 

assumption made in this chapter is correct.  

• Chapter 6: 
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o Results from this chapter on the evolution of the anterior talofibular 

ligament lead to specific predictions about ankle stability in modern 

humans. If there is a trade-off between bony and ligamentous stability 

directly related to body size, then within humans, a mismatch between 

these two variables may result in chronic ankle instability or ankle 

degeneration. For example, a large-bodied individual with a more keeled 

talocrural joint may be predicted to be less efficient at distributing forces 

through the joint and may ultimately suffer more frequently from joint 

damage and degeneration. 

o The absence or rarity of the anterior talofibular ligament in non-human 

primates is based on very few dissected primate ankles. More data 

assessing whether the anterior talofibular ligament is always absent from 

the non-human primate ankle, or variably present in certain species 

(Hylobates, and Gorilla in particular) is sorely needed.  

o The timing and pattern of the evolution of the anterior talofibular ligament 

is difficult to assess because of the scant fossil record. Two fossil tali from 

A. afarensis (A.L. 333-147) and Homo sp. from Dmanisi (D4110) will be 

important specimens to examine in order to test the hypotheses presented 

in this chapter. 

• Chapter 7: 

o The midtarsal break, or midfoot flexion, is a complex movement involving 

rotation of the calcaneus and subsequent motion of the cuboid, talus, and 

navicular. Although this dissertation examined only the dorsiflexion 
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component of this motion at only the calcaneocuboid and cuboid-

metatarsal joints, a cineradiography study that captures precisely how and 

where the different primate tarsals move during heel lift will help better 

understand midfoot mobility. These data will help assess how mobile the 

foot of early hominins may have been. In addition, this approach would 

help determine where on the medial side of the foot midfoot flexion is 

occurring. The morphology of ape 2nd and 3rd metatarsals strongly 

suggests that flexion is not occurring at the cuboid-metatarsal joint on the 

medial side, and thus the medial and lateral sides of the foot may be 

decoupled in primates.  

o A prediction from this study is that humans with relatively low lateral 

arches would possess more mobility at the cuboid-metatarsal joint. Given 

that mobility at this joint can be assessed by marking the tuberosity of the 

5th metatarsal, a kinematic study on modern human feet and the hypothesis 

of a correlation between arch development and cuboid-metatarsal 

dorsiflexion should be tested. 

o Given that hominoids are more plantigrade than cercopithecoids, I 

hypothesize that Old World monkeys possess even greater cuboid-

metatarsal curvature than hominoids. These data could be used to interpret 

the foot position in Miocene hominoids. 

o Finally, the results in this study strongly suggest that hominins had a 

stable lateral side of the foot, consistent with the presence of, at the very 

least, a long plantar ligament and at most, a completely developed 
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longitudinal arch. Although the 5th metatarsal curvature of two 

Australopithecus afarensis specimens was within the interquartile range of 

modern humans, the two specimens were also within the full range of 

modern ape morphology, and thus the hypothesis that A. afarensis had 

nonhuman ape-like midfoot mobility could not be refuted. Because the 4th 

metatarsal is a better skeletal indicator of midfoot stability, it will be 

important to apply the results of this dissertation to the currently 

unpublished 4th metatarsal from Hadar A.L. 333-160 when it is possible to 

study this fossil. 
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