
A Quantitative Assessment of Mandibular Variation in the Dmanisi Hominins

ABSTRACT
The Lower Pleistocene locality of Dmanisi, Georgia, positioned at an important temporal and geographic junction 
in human evolution, has produced an abundant hominin fossil sample. The combination of derived and primi-
tive characteristics within these hominins has provoked debate as to the evolutionary significance of Dmanisi for 
the early evolution of the genus Homo and the earliest dispersals of hominins outside Africa. Included within the 
Dmanisi hominin sample are four mandibular specimens, including one of the smallest Lower Pleistocene man-
dibles assigned to Homo, one of the largest assigned to Homo, and the earliest known edentulous hominin man-
dible. The range of variation displayed by this group of mandibles has been central to arguments regarding the 
taxonomic assessment of the Dmanisi remains. This paper tests the null hypothesis that variation in the Dmanisi 
mandibular sample is the result of sampling intraspecific variation, particularly age-related growth and skeletal 
size dimorphism, by using a quantitative metric approach. Utilizing both individual and nested resampling ap-
proaches, variation within the Dmanisi sample is compared to the patterns of variation seen in contemporary 
Homo sapiens, Pan troglodytes, and Gorilla gorilla. When individual trait comparisons are made, the results of these 
analyses suggest that in some metric characters the Dmanisi variation is greater than expected based on intraspe-
cific variation in the comparative taxa. However, when the results for individual characters are considered jointly, 
the null hypothesis of a single hominin taxon at Dmanisi cannot be rejected. These results, alongside anatomical 
and geological assessments of the sample, support the hypothesis of a single Dmanisi hominin taxon. These results 
do raise interesting questions regarding baseline variation, including that associated with sexual dimorphism and 
development, in the Dmanisi hominins specifically, and early Homo erectus more broadly. 

INTRODUCTION

The site of Dmanisi, located in southern Georgia, has 
yielded a rich assemblage of terminal Pliocene/early 

Pleistocene fossil hominins1. Excavations in 1991 yielded 
a hominin mandible (Gabunia and Vekua 1995) and ex-
cavations continuing to the present have uncovered well 
preserved cranial and post-cranial materials from multiple 
individuals derived from a tightly confined stratigraphic 
context (Ferring et al. 2011; Gabunia et al. 1999; Gabunia 
et al. 2000; Gabunia et al. 2002; Lordkipanidze et al. 2006; 
Lordkipanidze et al. 2007; Rightmire et al. 2008; Vekua et al. 
2002). The fossil assemblage is placed at an important junc-
tion, both geographically and temporally, for understand-
ings of the evolution of early Homo and the emergence of 
Homo erectus (Wood 2011). Included in the hominin sample 
from Dmanisi are four mandibles encompassing a large 
range of anatomical and metric variation. The variation 
within the mandibles has generated considerable discus-
sion as to the proper interpretation of the Dmanisi homi-
nins and the broader significance of the site for understand-
ings of Lower Pleistocene Homo (Bräuer and Schultz 1996; 
Dean and Delson 1995; de Lumley et al. 2006; de Lumley 
and Lordkipanidze 2006; Gabunia and Vekua 1995; Gabu-
nia et al. 2001; Gabunia et al. 2002; Jashashvili 2005; Meyer 

2005; Pontzer et al. 2010; Rightmire et al. 2006; 2008; Rosas 
and Bermúdez de Castro 1998; Schwartz 2000; Skinner et 
al. 2006; Van Arsdale 2006). Establishing greater clarity re-
garding the variability within the Dmanisi hominin sample 
is necessary before the site can be properly placed within 
the broader context of Lower Pleistocene evolution. The 
mandibles, the most size-variable hominin element within 
the assemblage, are central to this challenge.

The goal of this paper is to test the null hypothesis of 
conspecificity within the Dmanisi hominin mandibular 
sample. This null hypothesis is first placed within the geo-
logical context of the site and comparative anatomy of the 
sample in order to assess whether it is the appropriate start-
ing point for analysis. Finally, the results of the quantitative 
analysis will be considered with respect to the Dmanisi fos-
sil assemblage as a whole and its relationship to other Plio-
Pleistocene early Homo assemblages. 

BACKGROUND
The Dmanisi sample is unique for the Lower Pleistocene 
hominin record in that it provides a rich fossil assemblage 
derived from a tightly constrained (both temporally and 
spatially) locality. These attributes give the assemblage tre-
mendous potential to inform broader discussions of hom-
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does not provide any external evidence for the division of 
the Dmanisi hominin sample into multiple groups based 
on stratigraphic/temporal position within the site. Thus, an 
argument for multiple hominin taxa at the site is implicitly 
an argument for sympatric taxa.  

The broader paleontological setting of Dmanisi is also 
important. Work by several researchers (see supplemental 
information, Lordkipanidze et al. 2007; Agustí and Lord-
kipanidze 2011) has documented the lack of similarity be-
tween the Dmanisi faunal assemblage, with a distinctly 
Eurasian faunal signal, and those from penecontempora-
neous African localities such as the lower beds of Olduvai 
Gorge. The presence of multiple hominin taxa at Dmanisi 
therefore suggests a degree of ecological parallelism in 
the context of hominin ecology, niche development, and 
dispersal.  Such a scenario—two closely related hominin 
taxa, occupying the same environment, following parallel 
dispersal paths, but maintaining reproductive isolation—
appears unlikely, and certainly is not parsimonious in the 
absence of additional lines of evidence. The geology and 
setting of Dmanisi thus provide no evidence to reject the 
notion of a single hominin lineage at the site as an appro-
priate and parsimonious null hypothesis.

From an anatomical perspective, the Dmanisi man-
dibular sample displays a striking amount of variation 
(Figures 1 and 2). However, many of the most variable ele-
ments within the Dmanisi sample reflect traits that show a 
high degree of variation within and between other hominin 
taxa. The most variable aspects of the sample include mea-
sures of corpus height, dental root morphology, and distal 
molar size and morphology, all of which have been docu-
mented to show considerable levels of intraspecific varia-
tion (Abbott 1984; Antón 2003; Chamberlain and Wood 
1985; Dean and Benyon 1991; Kaifu et al. 2005; Kupczik et 
al. 2005; Scott and Turner 1997; Spoor et al. 2007; Tobias 
1995; Turner 1981; Weidenreich 1936; Wolpoff 1971; Wood 
1992; Wood and Abbott 1983; Wood et al. 1988).

In contrast, several of the more consistent traits in the 
Dmanisi sample are either distinct to early Homo or unique 
to Dmanisi. Most notably, the Dmanisi specimens share a 
distinctive torus mandibularis, anteriorly-projecting tuber-
culum marginale anteriori, pattern and location of foramina 
mentale, orientation and shape of the foramen mandibulare, 
and shape of the dental arcade2. The torus mandibularis is 
manifest as a slight to moderate swelling on the lingual sur-
face of the lateral corpus adjacent to P4. This feature is most 
prominently expressed on D2735, but is visibly and pal-
pably present on all of the Dmanisi mandibles (see Figure 
2). The tuberculum marginale anteriori, particularly in D211 
and D2600, exists as an anteriorly projecting phalange 
inferior to the canine along the basal margin (see Figure 
1). This feature is present in many early Homo mandibles, 
but only in these two Dmanisi specimens does it exhibit 
such an extreme anterior orientation, creating the impres-
sion of a groove along its medial edge. Each of the Dmanisi 
specimens that preserves the foramina mentale do so with 
one prominent foramen on the right side, and two foram-
ina—the second of which exists in smaller form distal and 

inin variability, dispersal, and ecology at the Pliocene/Pleis-
tocene boundary (Dennell and Roebroeks 2005; Zhu et al. 
2008). In particular, the Dmanisi assemblage, composed of 
multiple individuals with multiple preserved skeletal ele-
ments, should play a critical role in shaping discussions of 
sexual dimorphism, ontogeny, and other aspects of intra-
specific variation at this time period. Before such analyses 
can be fully undertaken, however, a necessary first step is 
establishing a parsimonious explanation for the variability 
within the hominin remains, particularly whether or not 
the null hypothesis of a single species can be rejected. 

Considerable debate exists on the taxonomic classifica-
tion within the Dmanisi sample and it is worth examining 
whether a hypothesis of conspecificity is the appropriate 
starting point for analyzing the Dmanisi mandibular as-
semblage. Schwartz (2000), based on the early crania and 
original mandible recovered from the site, argues for mul-
tiple taxa at the site. Gabunia et al. (2002) use the D2600 
specimen from Dmanisi to argue for the presence of a novel 
taxon, Homo georgicus, at the site. Skinner et al. (2006), using 
a quantitative approach, argue that the metric size variabil-
ity of the Dmanisi mandibles exceeds that of relevant com-
parative taxa, and therefore a hypothesis of multiple taxa at 
the site should be given consideration (though see reply by 
Rightmire et al. 2008). The mandibles, particularly the large 
D2600 specimen and its contrasts with the enigmatic and 
more gracile D211 specimen, play critical roles in each of 
these arguments. Still others have argued on the basis of the 
cranial (Lee 2005; Lordkipanidze et al. 2005; Lordkipanidze 
et al. 2007; Rightmire et al. 2006; Rightmire and Lordkipan-
idze, 2009) and dental (Macaluso 2009; Martinon-Torres et 
al. 2008) remains for a single, highly variable taxon at the 
site, most readily identified as early Homo erectus. 

The stratigraphic position of the mandibular materials 
within the site provide context of obvious relevance to con-
siderations of the null hypothesis. Current understandings 
of the geology and sedimentological processes associated 
with the formation of the site suggest a narrow stratigraph-
ic window for deposition of the Dmanisi remains, immedi-
ately straddling the Olduvai-Matuyama boundary at 1.78 
Ma (Ferring et al. 2011; Lordkipanidze et al 2007; Mallol 
2004; Rightmire et al. 2005). This has important implica-
tions for a hypothesis of conspecificity for the hominin re-
mains. While a hominin presence is documented at the site 
from at least 1.81 Ma (Ferring et al. 2011), all of the man-
dibular remains are from the same stratigraphic feature 
within the site, currently designated as the B1 horizon. The 
B1 horizon represents sediment and fossil material associ-
ated with a rapid depositional event immediately follow-
ing the Olduvai Matuyama reversal, conservatively dating 
from between 1.78–1.76 Ma. The hominin fossil material 
likely collected over a much shorter time period within 
this interval and has been excavated from a narrowly con-
fined area within the site. This raises the possibility that the 
Dmanisi remains represent something close to a contempo-
raneous group of individuals, referred to by Lordkipanidze 
et al. (2006) as a single paleodeme. For the purposes of this 
study, it is important to note that the stratigraphic context 
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can Homo remains. These features suggest, despite the size 
variability within the sample, a high level of anatomical 
similarity (see Van Arsdale 2006 for more detail).

inferior to the primary foramen—on the left side. D2600 
and D2735 share an ovoid, horizontally oriented foramen 
mandibulare, a condition not shared with other early Afri-

Figure 1. Dmanisi mandibles, lateral view.

Figure 2. Dmanisi mandibles, superior view.
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an effective and parsimonious measure of dimorphism 
(Smith 1999) and the index is treated as an absolute value 
so that all comparisons are between positive values.

Each IRD value generated from an observed Dmanisi 
pair was compared to a distribution of expected values in 
order to assess whether the observed value was significant-
ly greater than expected based on a hypothesis of conspeci-
ficity. The distribution of expected values was created by 
randomly sampling pairs of specimens with replacement, 
calculating the IRD value for the given pair and measure-
ment, and repeating this process 1000 times for each of the 
three comparative groups. For example, in order to assess 
whether the observed IRD value of .1049 generated from the 
comparison of bi-mental breadth in D2600 (45.2mm) and 
D2735 (50.2mm) was significantly greater than expected 
(i.e., the two specimens are more different from each other 
than you would expect from an equivalent pair of human, 
Pan troglodytes, or Gorilla gorilla specimens), a distribution 
of expected IRD values for bi-mental breadth was gener-
ated. This distribution was established by randomly draw-
ing a pair of specimens preserving this measure from one 
of the comparative samples, calculating an IRD value for 
the pair, and then repeating this process 1000 times. Com-
paring the observed IRD value in the illustration above to a 
randomly generated distribution based on measures of bi-
mental breadth in the Pan troglodytes comparative sample, 
it can be shown that the observed Dmanisi value exceeds 
the expected value in 638 of 1000 cases. In other words, our 
observed IRD value for bi-mental breadth is not significant-
ly different than expectations on the basis of comparisons 
with Pan troglodytes. This process was repeated for each 
of our 31 measurements, using each pairwise comparison 
available in the Dmanisi sample, and compared to each of 
our three analog taxa. 

Together, these tests produce a complex set of univari-
ate results for each comparative group, for each Dmanisi 
pair, and for the sample as a whole. One challenge in this 
approach is that it incorporates a large number of univari-
ate tests in the evaluation of a single hypothesis. It would 
be advantageous not only to generate an expected distribu-
tion for each measurement IRD value, but also an expecta-
tion for the pattern of variability of the entire set of compar-
isons. In other words, if we compare 31 separate measures, 
how many might we expect to differ significantly just giv-
en the nature of our sampling strategy and the variability 
inherent to our comparative taxa? How many significant 
univariate results would constitute a significant rejection of 

Therefore both the geology and the anatomy of the 
Dmanisi sample suggests that a null hypothesis of a single 
species, with variation associated primarily with differenc-
es in age-related growth and/or sexual dimorphism, is an 
appropriate starting point for analysis. 

METHODS AND MATERIALS
To examine the hypothesis of conspecificity within the 
Dmanisi mandibular sample, a set of 31 linear measures 
covering aspects of corpus height, corpus breadth, tooth 
size, dental arcade dimensions, symphysis proportions, 
and ramus breadth were collected on the Dmanisi speci-
mens as well as a sample of extant apes and recent humans 
(see Table 3 below). These measures were chosen on the 
basis of their preservation within the Dmanisi fossils and 
their ability to provide comparisons between the Dmanisi 
specimens. They were also chosen in order to provide as 
broad a coverage as possible of the mandibular morphol-
ogy of these specimens, while limiting the level of morpho-
logical redundancy. All measurements were recorded by 
one of the authors (APV) directly on the original fossil and 
skeletal material.

The comparative samples used for these analyses are 
chimpanzees (Pan trogolodytes), gorillas (Gorilla gorilla) and 
recent humans (Table 1). The use of these species is intend-
ed to provide comparisons with the most closely related 
extant species as well as provide different models of size, 
dimorphism, and anatomy. The human sample is drawn 
from the Libben Osteological Collection, housed in the De-
partment of Anthropology at Kent State University (Love-
joy et al. 1977). The Pan troglodytes and Gorilla gorilla sam-
ples are drawn from the Hamann-Todd collection, housed 
at the Cleveland Museum of Natural History, as well as the 
collections at the Zoologische Staatssammlung München, in 
Munich, Germany. 

Tests of our null hypothesis were structured around a 
series of pairwise comparisons. For each of the 31 measure-
ments used in this study, an index of relative difference 
(IRD) was calculated for each Dmanisi specimen pair that 
preserved the available measurement as the absolute value 
of the log difference between the two observed values:

xIRD = abs{ln(x1)-ln(x2)}

These observed IRD values then served as the basis for 
hypothesis testing using a randomized resampling meth-
odology. The use of a log difference has been shown to be 

 TABLE 1. COMPARATIVE EXTANT SAMPLE (total number of specimens 
including identifiable male, female, and unknown sex individuals). 

 
 Total Female Male Unknown 

P. t. troglodytes 100 37 35 28 
G. g. gorilla 75 39 34 2 
H. sapiens 86 29 41 16 
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D211/D2600, D211/D2735, and D2600/D2735. Each of these 
three pairs, owing to the uneven preservation of homolo-
gous elements across the sample, allows for the compari-
son of a different set and number of measurements. The 
D211/D2600 pair preserves 26 of the 31 available measure-
ments in common, D211/D2735 preserve 19 of the measure-
ments, and D2600/D2735 preserve 25 measurements in 
common. The observed differences in each pair were com-
pared to each of the three comparative model taxa (Homo 
sapiens, Pan troglodytes, Gorilla gorilla), producing nine sets 
of results in total.

Of the three Dmanisi pairs, the D211/D2735 combina-
tion produced the fewest number of significant compari-
sons. This is not a surprising result, as these two specimens 
are similar in both overall size and estimated dental age. 
When compared to a Homo sapiens model, only two of the 
19 available measurements showed significant differences 
at the p<0.05 level (external corpus breadth at P3 and ante-
rior tooth row length), or 10.5% of the total traits examined. 
Compared with both the Pan troglodytes and Gorilla goril-
la samples, no significant trait differences were observed 
within the set of measurements available for the pair. 

Each of the pairings involving the D2600 specimen 
produced a greater number of significant differences rela-
tive to each of the three comparative taxa. The D211/D2600 
comparison revealed six significant differences (23.08%) 
compared to a Homo sapiens model, seven significant dif-
ferences (26.92%) compared to a Pan troglodytes model, and 
five significant differences (19.23%) compared to a Gorilla 
gorilla model (Table 2). The traits that showed significant 
differences, in all cases, were focused on aspects of corpus 
height and alveolar dental arcade dimensions (Table 3). 
Chord length between gnathion and M3, corpus height at 
the canine, symphysis height, and distal tooth row length 
(M2-M3), were significantly more different within the Dma-
nisi pair than expected from any equivalent pair of speci-
mens from each of the comparative groups. 

The D2600/D2735 produced slightly fewer significant 
differences overall, but the differences that were observed 
still focus strongly on aspects of corpus height. Compared 
with both the Homo sapiens and Pan troglodytes samples, this 
pair displayed four significantly variable traits (16.00%), 
with only two significant differences compared to the Go-
rilla gorilla sample (8.00%). The two traits that were signifi-

our hypothesis in a multivariate context?
In order to incorporate the multiple univariate tests 

into a single hypothesis test, a nested resampling analysis 
was undertaken. This procedure is analogous to the resam-
pling test described above, but instead of using the Dma-
nisi specimens as the basis for observation, a randomly 
drawn pair from the comparative sample serves the role of 
a simulated unknown sample (analogous to our observed 
Dmanisi fossil sample). The observed differences within 
this pair are then compared to the remainder of the sample 
to assess how many of the available measurement com-
parisons represent significant differences relative to the 
remaining sample. This entire procedure is then repeated 
1000 times, each time randomly selecting a pair to serve as 
the simulated unknown sample. The product of this analy-
sis is a distribution of the expected frequency of significant 
differences within each of our comparative taxa, making no 
a priori assumptions about the distribution of the data. 

The nested resampling analysis can be viewed as a way 
of correcting for multiple univariate comparisons, free of 
the assumption of normality within the data and done ex-
plicitly within the sampling strategy utilized in the analy-
sis. In comparing multiple univariate measures using a 
pairwise sampling approach, by chance alone, some traits 
might differ significantly even within a known group of 
conspecific specimens. This procedure allows for the quan-
tification of the expected pattern of variability within each 
comparative sample given the limitations of the preserved 
fossil sample and the inherent variability within each com-
parative sample in order to better assess the significance 
of our results. If, for example, five of the 31 measurements 
examined show significant differences within the Dmanisi 
sample when compared to human standards, the nested 
resampling procedure provides a basis for evaluating 
whether this value is unexpected. The result is a multivari-
ate test, based on univariate comparisons, of the null hy-
pothesis. All analyses were conducted using code written 
for the Matlab software package.

RESULTS
The first set of results is based on the comparison of the 
Dmanisi sample to randomly drawn pairs of comparative 
specimens. Three observed pairwise comparisons were 
available within the Dmanisi sample for this set of tests—

TABLE 2. NUMBER AND PERCENTAGE OF AVAILABLE MEASUREMENTS WITH 
SIGNIFICANT PAIRWISE DIFFERENCES (at the p=0.05 level). 

 
 Pan t.t. Gorilla Homo 

Dmanisi Pair S. Difs. % S. Difs. % S. Difs. % 

D211 / D2600 7/26 26.92 5/26 19.23 6/26 23.08 

D211/ D2735 0/19 0.00 0/19 0.00 2/19 10.53 

D2600 / D2735 4/25 16.00 2/25 8.00 4/25 16.00 
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cantly more variable than each of the three comparative 
models were corpus height at canine and corpus height at 
P4. 

In order to properly evaluate the above results, it is 
necessary to have a clear sense of the expected level of vari-
ability given the comparative models utilized in this study 
and sampling regime imposed by the fossil data. The nest-
ed resampling analysis serves this function by generating 
a distribution of expected significant differences given the 
number of univariate tests conducted and the nature of the 
comparative sample and sampling strategy.

In the 1000 randomized simulations examined, the 
human comparative model produced an average of 5.7% 
significant differences (approximately one or two out of 23 
or 24 traits available for study) between randomly drawn 
pairs (Figure 3a). Pan troglodytes and Gorilla gorilla simula-
tions produced similar results, with 6.04% (approximately 
one or two out of 27 or 28 traits available for study) and 
6.40% (approximately one or two out of 26 or 27 traits 
available for study) of observed measurements display-
ing significant differences, respectively, within a randomly 
drawn pair (Figure 3b, 3c). It is not the average percent-
age of significant differences that is of interest, though, 
but where our observed results fit within the distribu-
tion of expectations. How frequently do the results of the 
nested resampling analysis exceed the variability observed 
within our Dmanisi-comparative taxon comparisons? For 
example, when compared to the Gorilla gorilla compara-
tive sample, the Dmanisi pairings showed significant dif-
ferences ranging from 0% (D211/D2735) to 19.23% (D211/
D2600) of the compared measurements. Looking at the Go-
rilla gorilla distribution of expected differences generated 
by the nested resampling analysis, it can be seen that the 
greatest observed value (19.23%, generated from the D211/
D2600 comparison) exceeded the simulated value in 899 of 
the 1000 trials. This makes it towards the high end of the 
distribution, but suggests our result is not significant when 
the aggregate perspective is taken into account. Given the 
measurements included in this analysis, a pairwise sam-
pling approach, and the variability inherent to Gorilla goril-
la, finding several significant differences is not unexpected. 
The variation observed within Dmanisi mandibular pairs 
does not exceed the expected level of variation in a Gorilla 
comparative model.

The results for Pan troglodytes and Homo sapiens were 
similar, though the Dmanisi 211/2600 comparison comes 
even closer to significance in these models of variation. 
The analysis of the D211/D2600 pair compared with a Pan 
troglodytes model of variation yielded seven significant dif-
ferences, or 26.9% of our observations. This value exceed 
937 of the 1000 simulated distributions in our nested resa-
mpling analysis, suggesting this value is unlikely, but not 
significantly so, given our comparison. Compared with hu-
mans we found six significant differences, or 23.1% of our 
observations, a value that exceeded 940 of 1000 simulated 
trials in our nested resampling analysis using the human 
comparative model.

Figure 3. Nested resampling results (a,b,c: top to bottom) show-
ing the expected distribution of significant differences in humans, 
Pan t.t. and Gorilla, respectively. Each figure displays where in 
the distribution each of the analyzed Dmanisi pairs falls, includ-
ing the percentile within the generated distribution of expected 
differences. The largest difference within the Dmanisi sample 
occurs between D211 and D2600, with the observed pattern of 
variation placing this pairing on the tail of all three distributions. 
Although it approaches significance when compared to humans 
and Pan t.t., the results fail to reject the null hypothesis of a sin-
gle Dmanisi hominin taxon.  
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and subsequent age-related growth, across the sample. 
The mandible is one of the most dynamic skeletal ele-
ments throughout life and continues to undergo substan-
tial changes even after primary skeletal growth has ceased, 
owing to changes and degradation of the dentition (Björk 
1969; Enlow and Hans 2008). Within the Dmanisi sample, 
the two younger specimens (D211 and D2735) are both in 
the midst of M3 alveolar eruption, the former just ending 
the process, with slight polishing wear on the M3, and the 
latter likely slightly earlier in the process of eruption. Fig-
ure 4 displays the relative ratio between adult mandibles 
and “late adolescent” specimens, defined by actively being 
in the process of M3 alveolar eruption (similar to the time 
frame bracketed by D2735 and D211), of corpus height and 
breadth. Whereas corpus breadth has essentially reached 
peak dimensions by the time of M3 eruption, corpus height, 
particularly in humans, is only 80-90% of full adult size on 
average. This suggests that some of the gross size differenc-
es between D2600 and the two younger Dmanisi specimens 
are the result of unachieved growth for each of the latter 
specimens. The morphology of these specimens—includ-
ing the decline in corpus height distally in D2735, the lack 
of superficial structures on D2735 such as a torus lateralis, 
and the differences in inclination of the ramus between 
D2735 and D2600—also support the idea of age-related 
changes within the sample. Even accounting for the pos-
sible effects of growth, the difference between D2600 and 

These results fail to reject our null hypothesis of a single 
Dmanisi hominin taxon. However, they do suggest the lev-
el of intraspecific variability within Dmanisi is consistently 
elevated, even when compared to Gorilla gorilla, a species 
with a high degree of sexual skeletal size dimorphism.

DISCUSSION
Our results support the conclusion of previous research on 
the cranial (Lee 2005; Rightmire and Lordkipanidze 2010; 
Rightmire et al. 2006) and dental (Macaluso 2009; Marti-
non-Torres et al. 2008) remains from Dmanisi in favor of a 
single Dmanisi hominin species. Despite the pronounced 
level of variation within the mandibular sample, our re-
sults fail to reject the null hypothesis of a single species. 
This conclusion also is consistent with parsimonious inter-
pretations of the Dmanisi hominin assemblage supported 
by the geology of the site and comparative anatomy of the 
hominin mandibular remains. 

These results do not, however, come without questions 
regarding the variation within the Dmanisi sample. That 
the results presented here show the observed level of varia-
tion to be near the high end of expected distributions of 
variation, even using Gorilla gorilla as a comparative taxon, 
raise important questions about the source of variability 
within this assemblage and for Homo erectus more broadly. 

One important source of variation within the Dmanisi 
mandibular assemblage is certainly the difference in age, 

Figure 4. Ratio of adult/subadult height and breadth measures at M1. Subadults are defined, in this case, as specimens in the process 
of M3 alveolar eruption, comparable to the dental eruption stage bracketed by D2735 and D211. Whereas corpus breadth is largely 
equivalent between late adolescent and adult mandibles, adults show consistently taller corpora.
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phism in the Dmanisi remains raises obvious questions for 
the interpretation of other early Homo remains from East 
and South Africa (Kramer et al. 1995; Lieberman et al. 1988; 
Lieberman et al. 1996; Wood 1993). 

The Dmanisi mandibular sample presents an interest-
ing case of a temporally and geographically constrained, 
anatomically similar, but highly size variable sample of 
early Homo fossil material. This analysis suggests that de-
spite the large differences in size within the sample, the null 
hypothesis of a single species on the site cannot be refuted 
on the basis of the mandibular remains. The most parsimo-
nious and best classification of the Dmanisi material thus 
remains that of a single, size variable taxon of early Homo. 
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ENDNOTES
1 Our usage of Pliocene and Pleistocene will follow the Gradstein et al. 

(2004) definition of these terms, placing the Pliocene/Pleistocene 
boundary at approximately 1.8 Ma.

2 Anatomical terminology follows Weidenreich (1936).
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