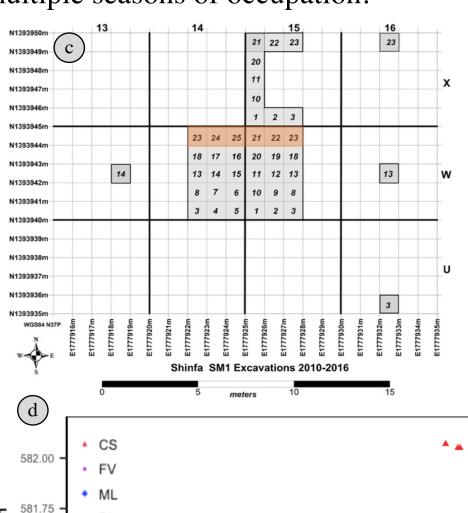
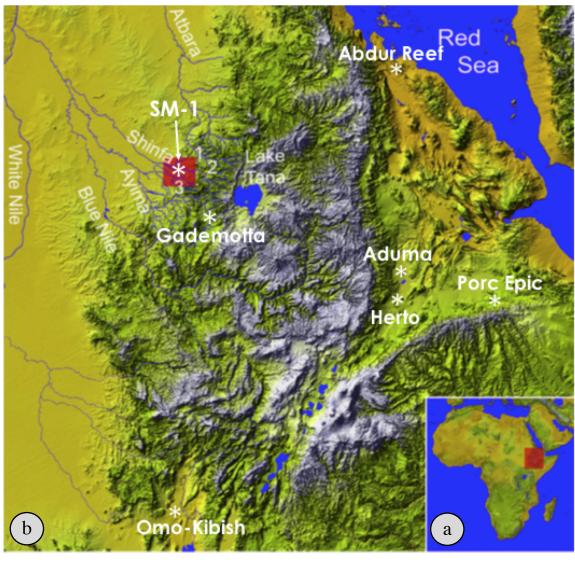
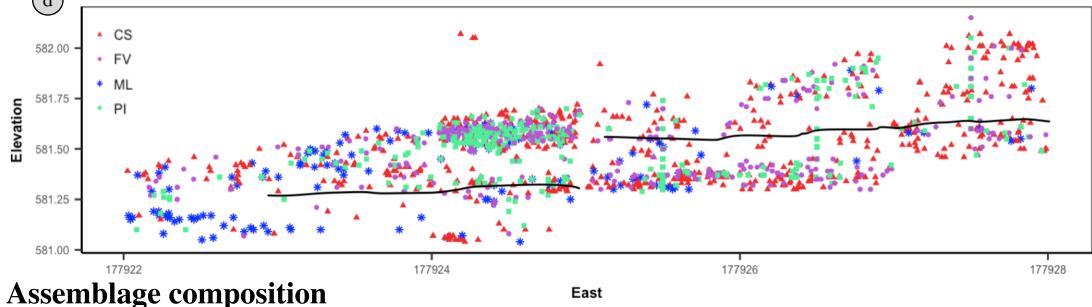


Taphonomy and foraging behavior at SM1, a late Middle Stone Age site in NW Ethiopia


Introduction


Excavations at SM1, a late MSA site (>50 ka) in NW Ethiopia, reveal stratified, open-air occupations with abundant chipped stone artifacts and faunal remains. SM1 is unusual for the MSA because the fauna include both terrestrial and abundant aquatic taxa. Taphonomic analyses suggest that fauna are largely human-collected, but also reveal a complex postdepositional history for the site. Faunal analyses indicate that MSA humans at SM1 focused hunting and foraging activities on smaller terrestrial mammals and birds, and also exploited fish and mollusks. This combination of riverine resource use and a restricted body-size focus may represent a seasonal facet of foraging behavior at SM1.

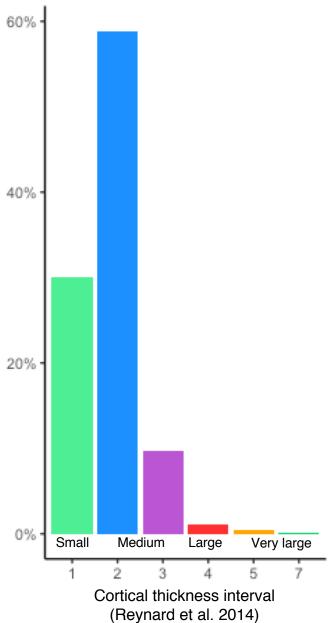
SM1


SM1 is located along the Shinfa River, a trunk tributary of the Blue Nile, in NW Ethiopia. Dating work is ongoing, but currently the best estimates derive from AMS ¹⁴C dates on ostrich eggshell, which indicate that the oldest occupation layers are >50 ka.

Seven seasons of excavation have exposed 58 m^2 , and document a rich record of MSA habitation that includes thousands of *in-situ* lithics and faunal remains. Fauna and artifacts are closely associated throughout the site, and the vertical distribution of material suggests multiple seasons of occupation.

(a & b) Map showing SM1 and other MSA sites in the Horn of Africa. (c) Excavation plan map of SM1 2010-2016 excavations, with units in crosssection highlighted in orange. (d) Partial cross-section of main excavation block at SM1 with black lines indicating stratigraphic divisions between different occupation layers.

The SM1 fauna consists of a diverse range of terrestrial and aquatic taxa. Most specimens are largely non-identifiable fragments. Terrestrial fauna are dominated by small/medium-sized animals, with birds and bovids accounting for 89% of those identified to taxon. Aquatic fauna are primarily catfish, with *Clarias* and *Synodontis* being the most abundant. Although body size estimates are not yet available, comparisons with modern fish suggest fossil fish range in size from a few centimeters to a meter or more in total length.


Terrestrial and aquatic taxa at	SM1	
cf. Gazella granti	Grant's gazelle	
Antilopini size 1	Gazelle	b
cf. Reduncini size 2	Reduncine bovid	
Phacochoerus sp.	Warthog	
Carnivore size 1	Small carnivore	
cf. Cercopithecus	Vervet monkey	
Leporidae	Rabbit/hare	
Hystrix sp.	Porcupine	
Muridae	Gerbil	
Numida meleagris	Guinea fowl	
Struthio camelus	Ostrich	5 cm d
Serpentes	Snake	
Squamata	Lizard	(f) 🖡 👗 🜉 🗰
Crocodylus cf. niloticus	Nile crocodile	
Anura	Frog	
Bagrus docmak	Silver catfish	e e
Clarias gariepinus	Sharptooth catfish	
Heterobranchus longfilis	Vundu	
Auchenoglanis biscutatus	Giraffe catfish	
Synodontis schall/serratus	Wahrindi/Squeaker	
Schilbe intermedius	Butter catfish	Faunal remains from SM1: (a) Warthog molar, (b) small bovid mandible, (c) bird
Labeo cf. forskalii	Carp	tibiotarsus, (d) Clarias and Synodontis pectoral spines, (e) Bagrus hyoid, (f) larg
Etheria elliptica	Nile bivalve	Clarias mandible.

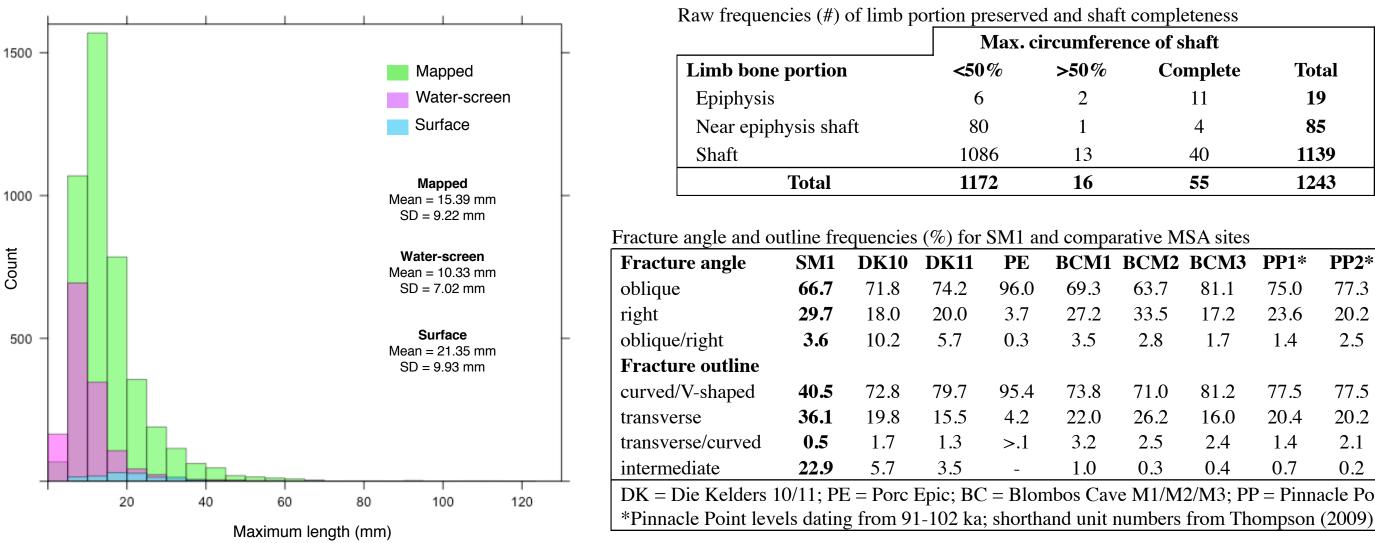
Element	AM	AV	BV	FV	LP	PR	RO	RP	SU	Total
Cranium/Horn core			0/12	1						1/12
Maxilla/Mandible			0/11	0/5	1/0		0/3			1/19
Tooth/Fragment			10/15	2/237		1/0	4/0		1/0	18/252
Scapula/Coracoid		0/6		5/0						5/6
Vertebra/Rib				23/34				2		59
Pelvis	2									2
Humerus/Femur		2/1	1/8	5/4		1/0	4/1			13/14
Radius/Ulna	5/0	0/3	1/1	0/1		1/0		1/0		8/5
Tibia		5	1	3						10
Metapodial/Phalanx		1/7	15/36	8/21				0/1		24/65
Compact bones			13	11			1			25
Long bone		111		1287			1			1399
Non-ID bone				1806*						1806*
NISP	7	138	124	1386	1	3	14	4	1	2019
MNI	3	5	5	-	1	1	2	2	1	21

RO = rodent; RP = reptile; SU = suid; *Not included in NISP

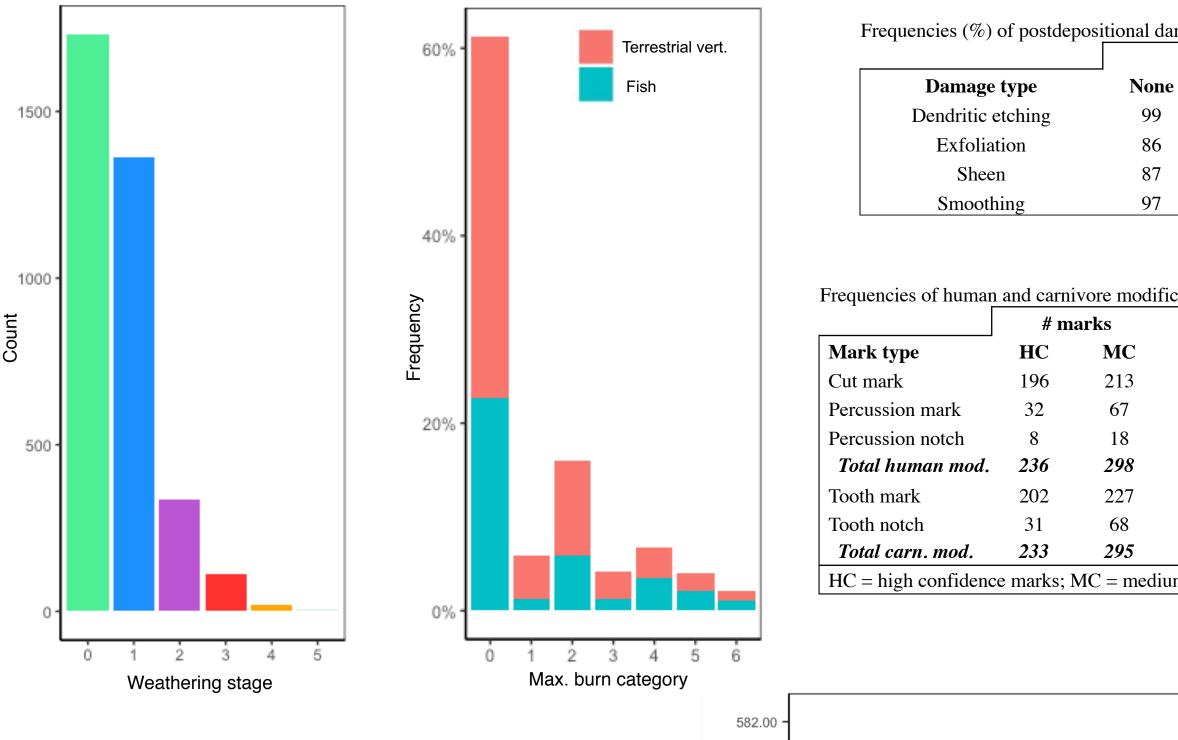
Fish element abundance	
Element	NISP
Branchiostegal	31
Cleithrum	17
Fin/Rib	46/30
Hyoid/Urohyal	18/4
Mandible/Palatine	67/16
Neurocranium	60
Opercle	10
Spine	246
Suspensorium	26
Vertebra/Hypural	260/5
Headplate frag.	829
Non-ID bone	669
Total	2434

Genus	NISP	MNI
Auchenoglanis	2	1
Bagrus	17	5
Clarias	129	25
Heterobranchus	1	1
Labeo	1	1
Schilbe	7	4
Synodontis	30	10
Total	188	43

Body size class frequencies (%) based on long bone cortical thickness as a proxy for body size. Small = $\sim 4.5-19$ kg; Medium = \sim 18-299 kg; Large = \sim 367 – 900 kg; Very large = 900 + kg

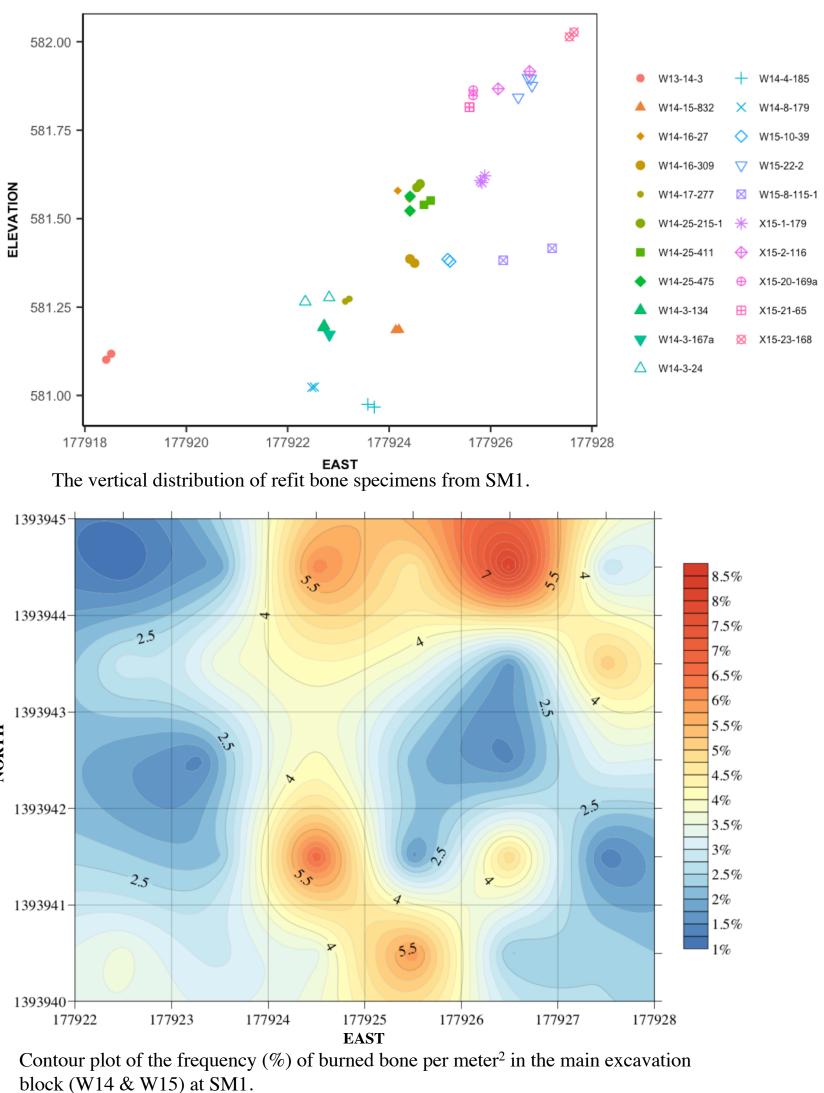

Christopher Davis, John Kappelman, and Lawrence Todd Department of Anthropology, The University of Texas at Austin

The current study


The goal of this study is to evaluate the role of humans and non-human agents/processes in the history of site formation at SM1. The faunal sample includes material collected over six field seasons from 2002-2016 that were classified and measured. Three classes of taphonomic data useful for identifying agents/processes of site formation were collected: fragmentation, surface modification, and postdepositional processes.

Taphonomic results

The SM1 fauna is heavily fragmented, with a preponderance of small fragments and limb bone samples that are dominated by shaft fragments with less than half of the original circumference of the shaft preserved. Fracture morphology patterns are generally similar to other MSA sites, and fractures with features indicative of fresh breaks (i.e., oblique angles, curved/V-shaped outlines) are most common. However, frequencies of transverse outlines, which are characteristic of dry breaks, are also rather high at SM1.


Less than 15% of specimens are weathered beyond Behrensmeyer's (1978) Stage 2, and other damage that can weaken bone and obscure cortical surfaces is also minimal. Most bones are unburned or locally-to-moderately carbonized, but it is worth noting that calcination occurs on both terrestrial fauna and fish. Finally, overall frequencies of both human cut/percussion and carnivore tooth marks are low, although human modification is only slightly more common. It is likely that the low observed frequencies of human and carnivore modification are due in part to the highly fragmented nature of the assemblage.

Human activity

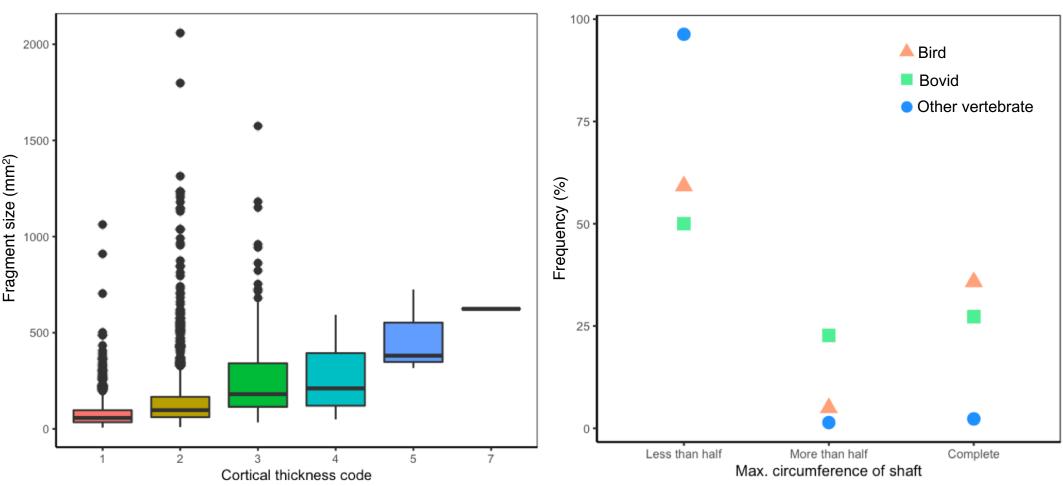
Abundant chipped stone artifacts and flakes speak to human occupation of SM1 during the late MSA and the presence of cut/percussion marks on bones document human processing of faunal remains. The close spatial association of archaeological and faunal remains also suggests that these materials were deposited around the same time, and refit studies showing minimal movement of objects within the soil column support this conclusion.

Coupled with other evidence of human activity, the high frequency of fractures with green breaks suggests that many bones were broken by humans for marrow removal. Moreover, the fact that 9% of terrestrial vertebrate bones and 17% of fish bones are calcined suggests that humans were involved in burning bones, since natural fires typically do not get hot enough to cause calcination. Additionally, the spatial distribution of burned material suggests the presence of discrete clusters of thermally altered bone and chipped stone, which likely represent ancient hearth areas.

Provenience	n	% total
Mapped	4455	72
Water-screen	1597	26
Surface	1561	2
Total	6176	

t comple	eteness			
nce of s	haft			
Co	mplete	Tot	tal	
	11		9	
	4	8	5	
	40	11.	39	
	55	12	43	
rative M	SA sites			
BCM2	BCM3	PP1*	PP2*	PP3*
63.7	81.1	75.0	77.3	76.3
33.5	17.2	23.6	20.2	21.0
2.8	1.7	1.4	2.5	2.7
71.0	81.2	77.5	77.5	77.1
26.2	16.0	20.4	20.2	20.4
2.5	2.4	1.4	2.1	2.1
0.3	0.4	0.7	0.2	0.4
e M1/M	2/M3; PF	P = Pinn	acle Poi	nt 1/2/3
1	C (71)			

ama	ge extent				
Extent of surface damage					
e	>50%	<50%	100%		
	1	0	0		
	12	2	0		
	10	2	1		
	2	1	0		


% specimens					
Total	HC	MC	Total		
409	1.2	2.0	3.2		
125	0.7	1.4	2.1		
24	0.2	0.4	0.6		
534	2.1	3.7	5.9		
429	1.3	1.9	3.3		
99	0.5	1.1	1.6		
528	1.8	3.0	4.9		

Carnivores

The presence of tooth marks and notches on bones from SM1 attests to carnivore involvement in site formation or subsequent modification, and the lack of long bone epiphyses is also a potential indicator of carnivore activity. However, tooth marks are relatively rare, and evidence for other types of damage caused by carnivore consumption and digestion of bones (e.g., sheen, gastric etching) and/or carnivore activity in general (e.g., coprolites) is essentially non-existent. Furthermore, small compact bones, which are often swallowed whole by carnivores, are well-represented in the faunal assemblage, and account for 28% of almost/complete specimens at SM1.

Postdepositional attrition

The high frequency of transverse fracture outlines suggest a potentially significant amount of non-nutritive bone fragmentation at SM1. The predominance of smaller animals with thin cortical bone also raises the possibility that extensive fragmentation is partly natural. However, the relatively high representation of "low-survival" elements (e.g., mandibles, vertebrae, ribs) and the lack of significant correlation between fragment size and cortical thickness (r = .18) indicate that bone fragmentation is not simply due to postdepositional attrition. The fact that bird bones, which have very thin cortical bone, retain complete shafts at higher rates than other fauna, and the recovery of numerous almost/complete microfaunal elements, further support these findings.

Agents of site formation

Taphonomic analyses document that carnivores played a limited role in assemblage formation/modification at SM1, and suggest a non-trivial amount of postdepositional bone destruction. Nonetheless, these analyses clearly indicate that humans were the primary agent of faunal accumulation and modification at SM1. As such, important aspects of the assemblage, including the taxonomic composition, spatial distribution of bones, and patterns of fragmentation and thermal alteration, are all likely to be largely the product of MSA human behavior.

MSA foraging behavior and ecology at SM1

Faunal analyses suggest that MSA humans at SM1 focused their hunting and foraging activities on small/medium-sized terrestrial animals, and regularly exploited fish and mollusks, making it one of only a handful of sites older than ~ 25 ka where systematic riverine resource use is well-documented. Additionally, the presence of aquatic fauna offers potentially important insight into the foraging ecology of the SM1 people.

The modern Shinfa River is a typical "temporary" river, with rapid, bankfull flows during the wet season that make aquatic foraging impractical Conversely, during the dry season, the river is reduced to a series of increasingly disconnected waterholes that local populations visit regularly to catch fish and mollusks, and hunt terrestrial mammals that visit to drink. Stable isotope analyses indicate that climates were similar in the MSA. with possibly even more pronounced seasonal shifts in rainfall and river flow (e.g., Nachman et al. 2015).

The Shinfa River in the middle of the dry season.

Given the similarity of ancient and modern environments, and the abundant fish and mollusks that are unlikely to have been regularly collected in the wet season, we hypothesize that SM1 was primarily occupied during the dry season. Thus, the combination of riverine resources and a restricted body size focus for terrestrial fauna may represent a seasonal facet of foraging strategies at SM1, in which dry season foraging centered heavily on exploitation of localized concentrations of fish and mollusks in isolated waterholes and populations moved away from the river and relied more heavily on terrestrial game during the wet season. Future research will focus on documenting seasonal resource use and occupation at SM1 in order to better understand how temporary river ecosystems in highly seasonal environments may have shaped important aspects of MSA foraging behavior at SM1 and other sites in similar settings. Acknowledgments

We thank the Ethiopian ARCCH for permission to conduct this research. This research was funded by NSF Grant 1724512 Foraging Blue Highways and NSF Grant1460986 NSF REU Middle Stone Age, NW Ethiopia. Special thanks to our friends and colleagues in the National Museum in Addis Ababa, those who live in the project area and assisted with field logistics, and to all of the students and volunteers who have worked on the Blue Highways project. References

Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(2), 150–162. Nachman, B. A., Tabor, N., Kappelman, J., & Todd, L. (2015). Seasonality and modern human foraging behaviors in the MSA of

northwest Ethiopia. American Association of Physical Anthropologists Meetings, St. Louis, MO. Reynard, J. P., Badenhorst, S., & Henshilwood, C. S. (2014). Inferring animal size from the unidentified long bones from the Middle

Stone Age layers at Blombos Cave, South Africa. Annals of the Ditsong National Museum of Natural History, 4, 9–25.